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Abstract

Much can go wrong with machine learning algorithms and statistical techniques. This

thesis investigates a number of cases where standard prediction methods perform poorly, and

where standard approaches to analyzing such methods fail. For instance, extreme outliers in

data can cause regression algorithms to make very poor predictions, while also calling into

question boundedness assumptions used in the theoretical analysis of such algorithms. If the

loss function of a regression algorithm is unbounded, as in many realistic scenarios, it raises

the fundamental question: can we derive generalization guarantees when using unbounded

loss functions? Another example is that the data points an algorithm is trained on may be of

widely varying quality, rendering typical statistical estimators suboptimal. Even standard

assumptions, for instance that it is desirable to completely minimize a machine learning

algorithm’s objective function, or that an algorithm’s hypothesis set is data independent,

or that smaller coefficients are more likely a priori than larger ones, as assumed in Ridge

Regression, can be substantially violated in practice.

In this thesis we investigate cases that are extreme, in that they can dramatically thwart stan-

dard methods, but that actually occur when working with common algorithms. We provide

solutions to address the problems listed above, and other problems that occur when making

predictions from data, by applying methods based on outlier clipping, point reweighting,

early stopping, and new choices for regularization penalties. Additionally, we give theoretical

guarantees for learning with unbounded loss functions using an analysis based on relative

deviations bounds. The solutions proposed in this thesis may significantly improve predictions

in real-world applications, as well as our theoretical understanding of prediction algorithms.
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Part I

Introduction
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What	causes	bad	linear	 prediction	
performance?

How	should	we	weight	data	points	if	
they	differ	in	quality?

How	can	we	make	linear	
regression	 robust	to	outliers?

How	can	we	make	statistical	
calculations	 robust	to	outliers?

What	can	we	achieve	by	changing	
regression	 regularization	 penalties?

Should	we	stop	early	 in
regression	 instead	of	regularizing?

Can	we	prove	that	algorithms	can	
learn	when	error	is	unbounded?

Can	a	biased	coin	only	rarely	beat	its	
expected	 number	of	heads?

Can	we	prove	algorithms	 learn	 when	their	
strategy	depends	on	the	data?

Ch 1 Ch 2 Ch 3

Ch 4 Ch 5 Ch 6

Ch 7 Ch 8 Ch 9

Figure 1: The image above summarizes the questions that we investigate in each chapter of
this thesis.

Much can go wrong with machine learning algorithms and statistical techniques. This

thesis investigates a number of cases where standard prediction methods perform poorly, and

where standard approaches to analyzing such methods fail.

In Part II of this thesis we examine a number of specific examples where common al-

gorithms can break down or have suboptimal performance. We do so by applying Ordinary

Least Squares and Ridge Regression to synthetic test cases, each case specifically designed

to illustrate one type of prediction failure. In Part III, we propose methods for handling

a number of these failures, through techniques such as point reweighting, clipping, outlier

2



removal, and non-standard regularization. Finally, in Part IV, we introduce mathematical

theory that can be useful for analyzing the performance of machine learning algorithms that

do not conform to certain standard assumptions of machine learning theory. Our emphasis

in this work is on regression (i.e. the prediction of real valued variables), rather than classifi-

cation (i.e. the prediction of categories), but some of our results are very general, applying

to many machine learning algorithms, as well as statistical estimation methods more generally.

More specifically, in this thesis, we discuss and propose solutions for the following issues, each

of which can cause suboptimal prediction performance, throw off the results of statistical

calculations, or prevent an algorithm from being analyzed successfully:

• Data points of varying quality. When data points differ in quality it generally

causes standard prediction methods to have suboptimal performance, as they fail to

take these differences into account. Higher quality points should be given more weight

than lower quality ones. We explore an example of this phenomena in Chapter 1, and

provide a framework for handling this type of problem in Chapter 2.

• Outliers in data. When extreme outliers occur in data, they hurt the prediction

performance of many standard methods. Outliers can be removed or given lower weight.

We study examples of outliers distorting predictions in Chapter 1, propose a method

for handling outliers in the context of Ridge Regression in Chapter 3, and provide a

method for handling outliers in univariate data in Chapter 4.

• Prior information available. When prior information is known about a prediction

problem, it is important to build this information into the solution in order to improve

performance. We examine some synthetic examples of this phenomena in Chapter 1,

and discuss an approach to incorporating prior information in the context of kernelized

3



Ridge Regression in Chapter 5, through the introduction of regularization penalties

that encode this information.

• Overfitting of the training data. The “complexity” of a machine learning algorithm

must be appropriate for the learning problem at hand, otherwise noise may have too

great an influence and overfitting may occur. Overfitting can be counteracted in a

variety of ways, such as by introducing a regularization penalty, or by applying early

stopping. An approach to regularization that generalizes the standard Ridge Regression

regularization is analyzed in Chapter 5, and an efficient method for avoiding overfitting

via gradient descent with cross-validated early stopping is discussed in Chapter 6.

• Wasting time converging. Machine learning algorithms can waste precious time

during training by continuing to learn beyond the point of benefit. Early stopping is

sometimes an appealing approach to solving this problem, as discussed in Chapter 6.

• Unbounded loss functions. When the error function used by a machine learning

algorithm is unbounded, it invalidates many of the standard analyses regarding the

ability of these algorithms to generalize what they have learned to future, unseen data.

We derive generalization bounds for unbounded loss functions in Chapter 7, and prove

a theorem about binomial distributions that is required in this analysis in Chapter 8.

• Data dependent hypotheses. When the hypothesis set explored by a machine

learning algorithm depends on the data, it prevents the application of most approaches to

analyzing an algorithm’s ability to generalize to future data, such as using Rademacher

Complexity or Uniform Stability. The case of data dependent hypothesis sets is

surprisingly common. It happens, for instance, whenever an algorithm uses k-fold cross-

validation to set parameters. We introduce a generalization of Rademacher Complexity

and Uniform Stability in Chapter 9, that unifies the two theories and allows them to

4



apply to data dependent hypothesis sets.

Please note that the Python code files implementing the algorithms discussed in this

thesis are placed in the public domain, and can be downloaded at the URL in the footnote

below1. We now begin our discussion of machine learning at extremes: how standard methods

can fail, and what can be done to improve them.

1http://spencergreenberg.com/code/doctoral_thesis_machine_learning_code.zip
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Part II

What Can Go Wrong
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Chapter 1

Breaking Ordinary Least Squares and

Ridge Regression

Our investigation will begin with examining two very popular prediction algorithms,

Ordinary Least Squares regression, and Ridge Regression. We will use hand constructed data

sets to investigate many of the ways that these algorithms can make inaccurate predictions.

Non-linear problems are the obvious cases where linear models like these fail, but as we will

see there are many other ways to break these algorithms. On some linear problems, these

algorithms are incapable of even learning at all.

The empirical test cases we examine will help us gain intuition for many of the topics

discussed in later chapters. For instance, we will explore cases where the quality of differ-

ent data points varies, which we will develop an approach to handle in Chapter 2. What

is more, some of these cases will have outliers, and we will discuss algorithms to handle

outliers in Chapters 3 and 4. We will also investigate cases where information is known

that is external to the training set, which will tie into our discussion in Chapter 5 of how

regularization can be used to encode prior information. Finally, we will discuss cases where

7



the potential for overfitting is high, which will be a theme that we touch on again in Chapter 6.

We now proceed to introduce Ordinary Least Squares regression and Ridge Regression,

and investigate how these algorithms break.

1.1 Introduction

Ordinary Least Squares regression is probably the most commonly used prediction

algorithm in the world. This algorithm makes predictions from data by using the linear

solution coefficients wols that minimize the squared prediction error, given by:

wols ≡ argmin
w

m∑
i=1

(X iᵀw − yi)2

where X is a matrix of training data with m points (one per column) and n features (one per

row), and y is a column vector of real valued training labels. The solution to this optimization

problem can be written:

wols = (XXᵀ)−1Xy, (1.1)

which we can then use to predict the label of any point x (represented as a column vector)

by taking xᵀwols. Despite its success in a huge range of prediction problems, Ordinary Least

Squares makes poor predictions for some types of problems, even some linear ones, and this

has motivated alternative algorithms. Ridge Regression is probably the most widespread

linear alternative. It improves performance in some contexts by solving a generalization of

the Ordinary Least Squares optimization problem, and has linear solution coefficients defined

as:

wridge ≡ argmin
w

m∑
i=1

(X iᵀw − yi)2 + λ
n∑
i=1

wi
2

8



where λ is a free parameter which determines how strongly to penalize large coefficients,

typically set using k-fold cross-validation. The linear solution coefficients for Ridge Regression

can also be written:

wridge = (XXᵀ + λI)−1Xy. (1.2)

But, as we will demonstrate, even Ridge Regression performs poorly on certain types of

problems, even some linear ones with simple additive gaussian label noise.

In order to better understand the limitations of Ordinary Least Squares and Ridge Re-

gression, when alternatives are preferable, and what can cause prediction algorithms to break

down in general, this chapter will explore data sets where:

1. Ridge Regression outperforms Ordinary Least Squares

2. Ordinary Least Squares outperforms Ridge Regression

3. Modifications to the standard algorithms will outperform both Ridge Regression and

Ordinary Least Squares

4. Neither Ridge Regression nor Ordinary Least Squares are able to learn

We draw conclusions about why Ridge Regression is usually preferable to Ordinary Least

Squares, and about why, in some cases, alternative linear algorithms are preferable to both.

We will investigate cases that cause suboptimal performance for Ordinary Least Squares and

Ridge Regression, and suggest ways that superior performance can be achieved. Unless other-

wise noted, the examples we use will all be modifications to a simple “default case”, which we

will discuss first. All data sets used in this chapter can be downloaded at the URL found in

9



the footnote below1 2. The Python code files for reproducing the performance numbers found

in this chapter are in the public domain, and can be downloaded at the URL in the following

footnote3. Throughout this chapter we will be referencing the R2 results from Table 1.1, which

show the percentage of label variance captured by various algorithms. The way we define R2

allows the possibility of negative values, which occur when an algorithm underperforms what

you would get just predicting the test set mean for all test set labels. However, since R2 < 0

and R2 = 0 both imply that a prediction algorithm is terrible, we do not differentiate between

the two cases in this chapter, and record both as 0% accuracy for simplicity and ease of

reading. More details about our R2 calculations are provided in the caption beneath Table 1.1.

In Table 1.1, in addition to showing accuracy numbers for Ordinary Least Squares (OLS)

and Ridge Regression (Ridge), which are the primary algorithms of interest in this chapter,

we also show the accuracy of some other variations on these algorithms that provide points

of comparison.

We now define these other algorithms. To simplify these descriptions, let us define R2
j

to be the label R2 achieved when using just the jth feature of the data to predict the training

set labels, in a one dimensional regression of the form a + bxj, where xj is the jth feature

of point x. With that definition in place, we are ready to describe the algorithms shown in

Table 1.1:

• Lasso, which applies Lasso Regression, is much like Ridge Regression but with a penalty

on the sum of the absolute value of the solution coefficients instead of the sum of the

square of the solution coefficients. The penalty is still multiplied by a constant λ, which

1 http://www.spencergreenberg.com/code/data_sets_breaking_ridge_regression.zip
2Due to size considerations, in the downloadable copy of our data sets, we have truncated the test set for

each case to 2,000 points, rather than the 40,000 used in computing out of sample accuracies in this chapter.
3http://spencergreenberg.com/code/doctoral_thesis_machine_learning_code.zip
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is set using 10-fold cross-validation.

• PCA, which performs principal component analysis on the positive definite matrix XXᵀ

to reduce the dimensionality of the data to just d dimensions, and then runs Ordinary

Least Squares on those d dimensions, with 10-fold cross-validation used to choose d.

All values of d from 1 up to the numerically calculated rank of X are tried.

• Top-Fts, which applies Ordinary Least Squares to only the d features with highest R2
j

values, with 10-fold cross-validation used to choose d.

• 1-Ft, which is like Top-Fts, but it applies Ordinary Least Squares to only the single

feature with the highest R2
j , ignoring all other features.

• Wgt-1d, which is like Ridge Regression, but the penalty applied to each feature is

λ( 1
R2
j
− 1) instead of just λ, where as usual λ is set using 10-fold cross-validation. This

means that features that perform better on their own (when used in one dimensional

regressions) are penalized less than features that perform worse on their own. It is

interesting to note that on the test cases in this chapter, this algorithm’s performance

was almost always between that of Ridge and Lasso, or falling only very slightly outside

of this range. The only exception is one case where Wgt-1d performs much better than

Ridge and Lasso. In Chapter 5 of this thesis we explore the construction of algorithms

like this one.

1.1.1 Our Default Case

Our default case, which we use as a starting point for all the other cases, has been selected

to be an easy problem for Ordinary Least Squares and Ridge Regression, as well as one of the

simplest examples of multivariate linear regression. As such, the labels are generated by a

linear model, the training set has plenty of data points, the noise-to-signal level in the labels
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R2 Accuracy of Different Algorithms on Different Data Sets

Data Set m n N/S OLS Ridge Lasso PCA Top-Fts 1-Ft Wgt-1d
1 Default 1000 100 0.3 91 91 91 91 90 7 91
2 Few Pts Per Ft 110 100 0.3 19 63 66 65 52 11 65
3 Noisy Labels 1000 100 3.0 0 5 3 0 0 0 3
4 Uncorrelated Fts 110 100 0.3 26 62 60 62 34 11 64

Correlated Fts 110 100 0.3 0 89 88 88 79 30 88
5 Ft Outlier 1000 100 0.3 88 2 23 21 2 2 19
6 Irrelevant Fts 200 200 0.3 0 64 91 58 92 92 91
7 Fts Decreasing 100 100 0.3 0 64 80 56 72 55 75
8 Unnormalized Fts 105 100 0.3 0 0 0 0 55 4 46

Normalized Fts 105 100 0.3 0 67 66 49 55 4 63
9 Prior Solutions 105 100 0.3 0 72 47 64 31 0 52
10 Singular Fts 100 400 0.3 0 16 4 20 0 0 15
11 Varying Pt Noise 1000 100 1.5 21 23 22 19 20 0 21
12 Label Outlier 1000 100 0.3 0 0 0 0 0 0 0
13 Heavy Tailed 1000 100 0.3 0 0 0 0 0 1 0
14 Non-Linear 1000 100 0.3 0 0 0 0 0 0 0

Table 1.1: Each row in the table above corresponds to a different data set. Performance on the
default data set is shown in the first row, which has 1000 training points (m) and 100 features
(n), with a noise-to-signal ratio (N/S) of 0.3, where all the values in the training data are
independent and generated from an isotropic unit gaussian. Each other data set is a variation
on the default data set as described in detail elsewhere in this chapter, having been modified
to illustrate a particular idea. The highest accuracy scores in each row are colored to stand out.

All columns to the right of N/S represent the percentage of variance in the labels
that was captured by different machine learning algorithms on 40,000 out of sample points.
That is, we measure accuracy using the test set R2 times 100, where R2 is defined as one
minus the ratio of the sum of squared prediction errors to the sum of squared differences
between the test set labels and the test set label mean. These R2 values can be negative
(indicating a prediction accuracy worse than is achieved by the out of sample mean). In some
of our test cases these negative values have enormous magnitudes. Since a negative value
and zero value both indicate terrible predictions, all negative values are displayed as 0 for
ease of reading. For cases where an algorithm could not be run (e.g. OLS when the number
of features exceeds the number of points) the variance captured was also recorded to be 0.
The first algorithms shown are Ordinary Least Squares regression (OLS), Ridge Regression
(Ridge), and Lasso Regression (Lasso). Ridge and Lasso both apply 10-fold cross-validation,
trying an exponentially increasing set of thirty λ (i.e. regularization parameter) values
ranging from 10−6 to 106 (as do all the other algorithms in this chapter that use k-fold
cross-validation to set a free parameter). The remaining algorithms are described elsewhere
in this chapter.
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is modest, and both the features and label noise are drawn independently from a gaussian

distribution. By modifying this basic example strategically, we will be able to degrade the

performance of Ordinary Least Squares and Ridge Regression while illustrating many reasons

why the two algorithms can fail, and how modifications to these algorithms can perform

better. As seen in the “Default” row of Table 1.1, Ordinary Least Squares (OLS) and Ridge

Regression (Ridge) each capture 91% of the variance in the test set labels for the default case.

Specifically, our default case consists of 1000 training points and 40,000 testing points

(to ensure low out of sample variability). Each point has 100 features. A random vector of

100 linear model coefficients is generated from an isotropic unit gaussian (i.e. a multivariate

gaussian distribution with zero mean and the identity matrix used as the covariance matrix)

plus one constant term generated from a unit gaussian, and the labels for the training and

testing points are then set by multiplying the training and testing points against these linear

coefficients (plus the constant term), and then adding independent gaussian noise. The

standard deviation of the noise is set so as to achieve a noise-to-signal ratio of 0.3. This is

done by first computing the standard deviation of the noiseless labels (i.e. the labels before

any noise has yet been added), then generating a vector of isotropic gaussian noise, then

multiplying this noise vector by the desired noise-to-signal ratio times the standard deviation

of the noiseless labels divided by the standard deviation of the noise vector itself. This gives

the noise a standard deviation equal to the noise-to-signal ratio times the standard deviation

of the noiseless labels, precisely as desired. The resulting noise is then added to the noiseless

labels to form the final label vector, y.

The features for each point are generated independently from an isotropic unit gaussian

distribution. After the data is generated, the mean and standard deviation of each feature

of the training points is calculated. These means are subtracted from the corresponding
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features of both the training data and testing data, and each feature in the training data and

testing data is divided by the corresponding feature standard deviations (calculated from the

training set). Note that for simplicity we do not add a feature of all 1’s to the matrix X, so

each of the linear prediction algorithms is forced to have an intercept of 0. We tested adding

such a constant feature, but it did not cause our conclusions to change.

Except in the ways that are explicitly noted for each test case, all test cases use pre-

cisely the same data generation process that is used by the default case. Each of the test cases

that follows is generated from scratch using a fixed random seed. That means that when

parameters such as the number of features change, the data that is used will generally change

in its entirety, since with a different number of features the sequence of random numbers

being generated changes. This means that the performance numbers will vary with a change

of random seed. We have, however, confirmed on a handful of different random seeds that

the takeaways here do not change, even though the precise performance numbers do, except

in places where that fact has been noted below.

You will find that many of the cases that follow are extreme examples. This is by de-

sign, as it is often the extreme examples that teach us the most. With that in mind, we will

now explore a variety of modifications to the default case, which are carefully designed to

affect the performance of Ordinary Least Squares and Ridge Regression.
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1.2 Ridge Regression Outperforming Ordinary Least

Squares

In this section, will discuss cases where Ridge Regression outperforms Ordinary Least

Squares. Ridge Regression is a popular modification to Ordinary Least Squares for good

reason. Ordinary Least Squares is often very effective at making predictions, but there

are quite a few important cases where Ridge Regression achieves much better performance,

with little drawback. In fact, the main drawback of Ridge Regression is increased running

time, which is the result of needing to test many values of λ. In our default case Ordinary

Least Squares and Ridge Regression achieve essentially the same accuracy. We now consider

modifications to the default case where Ridge Regression performs significantly better.

1.2.1 Few Points Per Feature

A simple way to make Ridge Regression outperform Ordinary Least Squares is to make

the ratio of training points to features small. In the “Few Pts Per Ft” row of Table 1.1, we

modify the setup of the default case so that it has only 110 training points, rather than

1000. We still use 100 features though, giving us a very low point to feature ratio. As might

be anticipated, this makes learning much harder for any algorithm. But Ordinary Least

Squares is impacted much more greatly than Ridge Regression, capturing only 19% of the

label variance compared to Ridge Regression’s 63%.

The issue here is, of course, overfitting. With so many features per point, there are many

vectors of solution coefficients that achieve high accuracy in the training set, but most of

these will perform badly out of sample. Essentially, the model has too much flexibility due to

having so many variables, so fits even the noise. By attempting to minimize the training error
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only, Ordinary Least Squares inevitably selects one of these models that does not actually

generalize well, being overly reactive to the label noise. Ridge Regression, on the other hand,

selects a λ parameter through k-fold cross-validation. The parameter λ reduces the size of the

solution search space, and eliminates from consideration solutions with very large coefficients.

The result is a model that does not overfit the training data, and so generalizes well to the

testing data.

1.2.2 Noisy Labels

Another advantage that Ridge Regression has over Ordinary Least Squares is greater

resilience to label noise. To illustrate this, we modify the setup for the default case by

adjusting the noise-to-signal ratio to 3 instead of 0.3. As can be seen in the “Noisy Labels”

row of Table 1.1, this prevents Ordinary Least Squares from learning anything, capturing

0% of the variance, whereas Ridge Regression still manages to learn a little, capturing 5% of

the variance. Ridge Regression’s superior performance under high noise comes from its use

of λ to adjust the bias-variance tradeoff. With λ ≈ 0, it cares primarily about minimizing

the prediction error, and subsequently the solution depends a lot on the specific realization

of the noise. Since the noise is so large, having the solution be so sensitive to the exact

labels is problematic. However, with λ larger, this dependence on the noise is reduced, as

the algorithm trades off a greater bias (i.e. a solution closer to the zero vector) in exchange

for reduced variance. By using k-fold cross-validation to select λ, an approximately optimal

tradeoff between bias and variance is struck. When the noise level is very high, a larger λ

tends to be chosen, as less reactivity to noise is desirable.

In Chapter 5 of this thesis we discuss in detail how the generalization performance of

Ridge Regression is impacted by noise, and why regularization helps.
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1.2.3 Correlated Features

Yet another situation that can throw off the performance of Ordinary Least Squares is

when there are highly correlated, noisy features. Consider the “Uncorrelated Fts” row of

Table 1.1. This case begins with the default case, but uses only 110 training points, and

corrupts the training and testing features matrices by adding gaussian noise. Note that in the

default case while the features are generated from an isotropic gaussian distribution, there is

no noise added to them. Ordinary Least Squares performs poorly on this case, capturing

only 26% of the variance. This is easily explained by the fact that there are 100 features,

which is almost equal to the number of points. But comparing this result to the “Correlated

Fts” row of Table 1.1, we see a new phenomena occur. This case is generated in precisely

the same way as the “Uncorrelated Fts” case from Table 1.1, except that it starts with only

10 distinct features instead of 100, with each of those 10 features then being duplicated 10

times to produce a full set of 100 features. Finally, additive gaussian noise is added to the

resulting training and testing features, exactly as in “Uncorrelated Fts”. In this case though,

the additive noise serves to prevent each feature from being identical to its duplicates.

The result is that for this new case “Correlated Fts”, all algorithms shown in the table

greatly improve in accuracy compared to the “Uncorrelated Fts” case, except Ordinary Least

Squares, which now captures 0% of the variance! Ridge Regression handles this new problem

easily, capturing 89%, compared to 62% in the “Uncorrelated Fts” case.

Why would all other algorithms in the table improve substantially while Ordinary Least

Squares becomes incapable of learning? The trouble here seems to be that using nearly

identical noisy features leads to multiple solution coefficient vectors that are very different

from each other, but that have almost the same training set accuracy, leading to an arbitrary

17



choice being selected. The noise then becomes largely responsible for which of these solutions

gets picked. For instance, if c1 and c2 are the coefficients for nearly identical features, Ordinary

Least Squares is almost indifferent between making predictions using the model 2c1−c2 or the

model 4c1 − 3c2, since they will lead to almost the same predictions on the training set. This

is related to the problem we saw in the “Few Pts Per Ft” case, which also involves having

too many solutions to choose from, but here we compound the effect through a different

mechanism. In “Few Pts Per Ft” the issue was that we had too many model parameters due

to having too many features. Here, by making the features noisy duplicates of each other, we

layer on top the problem that solutions with nearly identical performance can be constructed

by combining the redundant variables in different amounts. This makes it even harder for

Ordinary Least Squares to tell the difference between a useful and useless model, because so

many models perform well on the training set.

Ridge Regression resolves the problem that Ordinary Least Squares has by penalizing

large coefficients, and therefore preferring the model 2c1 − c2 to the model 4c1 − 3c2. If we

compare the solution coefficients found by both algorithms for the “Uncorrelated Fts” case

versus the “Correlated Fts” case, we find that in the latter case Ordinary Least Squares ends

up with coefficients whose median magnitude is more than 3x that of the former. Ridge

Regression has the opposite behavior, using coefficients of much smaller median magnitude

in the latter case than the former 4.

4We note that, for one random seed, we found a case where Ordinary Least Squares actually improved its
performance on “Correlated Fts” compared to “Uncorrelated Fts” , but on all the other random seeds that
we tested, we found an effect in the opposite direction.
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1.3 Ordinary Least Squares Outperforming Ridge Re-

gression

While Ridge Regression is generally a superior prediction algorithm to Least Squares,

it is not a strictly better algorithm. We will now discuss a case where Ridge Regression

substantially underperforms Ordinary Least Squares.

1.3.1 Feature Outliers

A “feature outlier” is a training point that lies unreasonably far from the other training

points. Of course, since points involve multiple dimensions, the question is raised as to which

distance metric is appropriate for measuring how far points are from each other. Fortunately,

we do not need to resolve this thorny issue to study the impact that feature outliers have on

Ordinary Least Squares and Ridge Regression.

In the “Ft Outlier” row of Table 1.1, we apply our algorithms to a data set generated

in the same manner as the default case, but we multiply all features of the first point by 500,

producing a point that would be considered an extreme feature outlier using any reasonable

distance function. We furthermore assign this point a label value of 1, so that its label is not

unreasonably large, but is inappropriate given the features for that point5.

Noting the performance shown in Table 1.1, we see that the impact of a feature outlier is very

different from that of a label outlier (i.e. a point with extreme labels rather than extreme

features, which we will consider later on, and which is also shown in the table). Ordinary

5Note that in all cases described in this chapter where we replace specific points in the data, such as when
adding a feature outlier, the noise-to-signal ratio is set based on only the other data points (not including
the point replacements), otherwise the amount of noise would be heavily distorted by the introduction of an
outlier.
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Least Squares handles the feature outlier well, capturing 88% of the variance, whereas Ridge

Regression’s performance is destroyed, capturing only 2%. This may be surprising to those

who consider Ridge Regression a more robust algorithm than Ordinary Least Squares (e.g.

due to the introduction of regularization), or who think that because it is a generalization of

Ordinary Least Squares it must be a strict improvement.

Let us take a moment to consider what feature outliers do to these algorithms. In 1d

space a feature outlier is a real problem because an extremely bad prediction will occur on

that outlier unless the (single) solution coefficient is close to zero. This renders all predictions

close to zero. In higher dimensions though, a vector of linear solution coefficients has the

flexibility to predict a value close to zero for the feature outlier, while still making reasonable

predictions on the other points. It simply requires the solution coefficient vector to be close

to orthogonal with the point that is the feature outlier, a single linear constraint on the

solution coefficients. Some distortion does occur in general, but it is not devastating. Hence,

the reason why Ordinary Least Squares is not substantially impacted in the case at hand. It

has plenty of dimensions to use to work around that outlier.

So then why does Ridge Regression perform so poorly? It is actually due to the k-fold

cross-validation procedure, which itself is not robust to outliers, causing a poor selection

of the λ parameter when a feature outlier is present. If we replace the standard k-fold

cross-validation procedure with a more robust procedure that clips (i.e. winsorizes without

removing) the top 5% largest errors and the bottom 5% smallest errors during cross-validation

before taking the mean to get the average error, then performance of Ridge Regression on

this data set jumps all the way back up to 88% (not shown in the table). This is the same

accuracy as Ordinary Least Squares.
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The reason that the standard k-fold cross-validation is problematic in the presence of a

feature outlier is because such a point is terribly predicted when it happens to be in the

out-of-sample set, causing a very large error that can swamp the error of the others points.

So the feature outlier can cause a terrible selection of λ 6. Note that while using a more

robust variant on k-fold cross-validation has substantial benefits in the presence of fea-

ture outliers, it does not (as we will see) help with label outliers, since it does not resolve

the problem that Ridge Regression’s solution coefficients depend linearly on the label vector y.

In Chapter 3 of this thesis we explore a technique for handling feature outliers, analyze their

impact mathematically, and discuss robust k-fold cross-validation at greater length.

1.4 Modifications Outperforming Ridge Regression and

Ordinary Least Squares

Even in cases where Ridge Regression or Ordinary Least Squares perform reasonably well,

we may be able to significantly outperform both of them by modifying the algorithms or

using alternative (but related) algorithms. Here we discuss cases of this type.

1.4.1 Irrelevant Features

Let us consider a situation where only one feature is actually useful for predicting the

labels. We construct this case by starting with the setup of the default case, then adjusting

the number of points and features to both be equal to 200, and finally, generating the labels

by only using the first feature, which we assign a coefficient of 1. The results are shown in the

“Irrelevant Fts” row of Table 1.1. Ordinary Least Squares of course performs terribly since

6We note that we observed feature outliers to have somewhat less impact on Ridge Regression when using
leave-one-out cross-validation to select λ, compared to 10-fold cross-validation.
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there is only one point per feature, capturing 0% of the variance. On the other hand, Ridge

Regression captures 64% of the variance, which it turns out is far from optimal. We can tell

because Lasso Regression, shown as “Lasso” in the table, captures 91% of the variance. Lasso

Regression involves minimizing an objective function much like that of Ridge Regression,

but with a penalty on the absolute value of each coefficient, instead of the square of each

coefficient. Hence, the Lasso Regression solution coefficients are defined by:

wlasso = argmin
w

m∑
i=1

(X iᵀw − yi)2 + λ
n∑
i=1

|wi|

For this case, where we have many irrelevant features, Ridge Regression has a problem because

the squared penalty it uses prefers many coefficients of small magnitude to one coefficient of

large magnitude, but one large coefficient is precisely what is needed. To be more precise, if

all of our coefficients have magnitude ε, then Ridge Regression assigns a penalty proportional

to
∑n

i=1wi
2 = nε2, which for reasonably large n is much smaller than what we get in a case

where one coefficient has magnitude nε, and all the others are 0, which would yield a penalty

n2ε2. Hence, Ridge Regression has a built in preference to use many features a little bit,

rather than one feature a lot, which is directly harmful in this case. Lasso Regression, on the

other hand, assigns precisely the same penalty to n coefficients each with a magnitude ε as it

does to one coefficient with a magnitude nε, and therefore is perfectly willing to use just a

small number of non-zero coefficients. Relatedly, Lasso Regression tends to produce sparse

solutions, where many coefficients are zero, which is well suited to this particular case.

As we might expect, the algorithm “1-Ft” performs well in this case, because it makes

predictions using Ordinary Least Squares applied to only the single feature that best linearly

predicts the labels in a one dimensional regression. In other words, it is perfectly suited to

this case, capturing 92% of the variance. It is remarkable that Lasso Regression does almost

22



as well, despite making much weaker assumptions about the features, achieving 91% accuracy.

We see therefore that while Ridge Regression and Lasso Regression both have a prefer-

ence for small solution coefficients, they make different implicit assumptions about the

distribution of these coefficients, and therefore will be suited to somewhat different problems.

For instance, Ridge Regression will tend to have an advantage when most features are about

equally useful, whereas Lasso Regression will tend to have an advantage when most features

are useless.

1.4.2 Features of Decreasing Usefulness

Previously we saw that Lasso Regression can have an advantage over Ridge Regression

if most of the true coefficients are zero in the linear model generating the labels. It may

therefore be tempting to conclude that this outperformance of Lasso Regression hinges on

sparsity of the features. In the “Fts Decreasing” row of Table 1.1 we consider a related but

non-sparse case where Lasso Regression again substantially outperforms Ridge Regression.

This case follows the setup of the default case except that it uses only 100 training points,

and the true coefficients are chosen to be (1/2, 1/3, 1/4, . . . , 1/(m+ 1)). Because the label

noise is independent of the features, this means that the first feature is the most useful for

making predictions, the second feature the second most useful, and so on.

Why would Ridge Regression perform relatively poorly in this case? We believe the in-

tuition is as follows. Since the number of points and features is equal, there is a very high

potential for overfitting the data. To stop this from happening, Ridge Regression cannot

choose a small λ. But this means that large coefficients are penalized significantly, so it

prefers to use a greater number of features with smaller coefficients (even if they are not that
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useful) to having larger coefficients in the earlier (i.e. most useful) features. For this case,

doing so is a particularly bad idea. Lasso Regression, on the other hand, mostly ignores the

less useful coefficients, assigning many of them a zero value. At first glance this may not seem

like a great idea (since all the features are useful to a degree), but given a fixed noise level it

is wiser to focus attention on the earlier features, which have a lower noise-to-signal ratio. In

doing so, Lasso Regression captures 80% of the variance, compared to Ridge Regression’s 64%.

We find that the “Wgt-1d” algorithm also does quite well in this case. It exploits the

fact that, in this situation, a feature working well independently in a one dimensional regres-

sion is a good indicator of it working when combined with the other features. This algorithm

captures 75% of the variance, which is slightly inferior to Lasso Regression’s 80%.

The algorithm “1-Ft” shown in a columns of Table 1.1 gives us some further insight into this

case. This algorithm simply tries to predict the training labels one-by-one using each feature

in its own one-dimensional regression, then selects the single feature that performs the best

on the training set, and uses that best feature alone to predict labels for the test set. On the

“Fts Decreasing” case this simple algorithm captures 55% of the variance just using a single

feature, not terribly far from Ridge Regression’s 64%.

1.4.3 Poor Normalization

Ordinary Least Squares has the useful property that its prediction accuracy is invariant

to full rank linear transformations of the points matrix X. But for Ridge Regression this is

not the case. In fact, poor normalization of the features can lead to poor performance. Even

multiplying one feature by a constant (e.g. changing the units of the feature from inches

to feet) can have an impact on prediction accuracy, since large coefficients are penalized
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by Ridge Regression, and if the values of a feature are made smaller, the corresponding

coefficient must become larger to compensate (hence being penalized more). To illustrate this

in an extreme form, we construct a case where the variance of the ith feature is set to 1.1i−1,

whereas the corresponding coefficient for the ith feature is set to the reciprocal 1.1−(i−1). This

setup also differs from the default case because we use just 105 training points.

Now, we examine the impact of leaving our features unnormalized (unlike the default

case, which is normalized). The result is shown in the row “Unnormalized Fts” of Table 1.1.

We compare this result with a case generated in exactly the same way, except using the

standard normalization, where we subtract from each feature the training means and divide

each feature by the training standard deviations. The result is shown in the row “Normalized

Fts”. Ridge Regression is unable to learn at all in the unnormalized case, capturing 0%

of the variance, whereas after normalization it captures 67%. On poorly normalized data,

Ridge Regression regularization sometimes cannot operate properly. We note that the only

algorithm from Table 1.1 that performs reasonably well when the features are unnormalized

is Top-Fts, which captures 55% of the variance.

1.4.4 Using Previous Solutions

One simple way to outperform Ordinary Least Squares and Ridge Regression, even on

simple linear problems, is to use information that is external to our training data. For

instance, we may have solved similar prediction problems in the past, or we we may be able

to view our current prediction problem as coming from a set of other similar prediction

problems, with the average of solution coefficients on those previous problems producing an

estimate of the solution coefficients for this problem. For instance, suppose we are trying to

build a model to predict the number of strikeouts that one particular baseball pitcher will
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have in a game based on various factors related to him and the opposing team. In this case

it could be very beneficial to incorporate models we have learned for other pitches, and use

them to inform our model for this particular pitcher.

We demonstrate an example of this phenomenon in the “Prior Solutions” row in Table 1.1,

where we treat the underlying linear coefficients that generate our labels as being drawn from a

probability distribution over coefficient vectors. We generate a random mean vector with size

equal to the number of features, and a random positive definite matrix to use as a covariance

matrix, and then we draw 250 possible solution coefficient vectors from a multivariate normal

distribution using this mean vector and covariance matrix as its parameters. Only one of

these 250 vectors (selected at random) is then used to generate the labels for our training

data. In this case we assume that, as the machine learning practitioner, have access to the

other 249 vectors of coefficients which reflect our past solutions to similar problems. This

information can then be exploited to better estimate the 250th coefficient vector, which is

the one of interest.

But how can we incorporate the other information into our current prediction problem? One

approach is to compute the average of the other 249 coefficients, which we will call b, and

modify our Ridge Regression problem so that rather than using regularization to push our

coefficients towards zero, we instead use it to push our coefficients to this vector b. Then, the

parameter λ, which is selected via k-fold cross-validation, determines how much we push our

solution towards b, which ideally should be a function of how close b is to the solution we are

looking for. The modified Ridge Regression optimization problem can be written:

wb = argmin
w

m∑
i=1

(X iᵀw − yi)2 + λ
n∑
i=1

(wi − bi)2
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Intuitively speaking, if the true coefficients are closer to b than to 0, we may find that this

approach is superior to standard Ridge Regression.

In the “Prior Solutions” row in Table 1.1 we see that the number of points we use for

this problem compared to the default case has been reduced to just 110, which serves to

heighten the effect, but otherwise we imitate the default case. On this problem, Ridge

Regression captures 72% of the variance, which is pretty good. But by using the modified

Ridge Regression problem above, and setting b to the mean of the solution coefficients that

were drawn from the same distribution as the one of interest, we capture 76% of the variance

(not shown in the table). The size of the improvement, while modest here, will depend on

how far the true coefficients are from the zero vector (that Ridge Regression pushes towards)

compared to b (which this modified Ridge Regression pushes towards).

In Chapter 5 of this thesis we explore modifications to the Ridge Regression objective

function (like the one mentioned above) in greater detail.

1.4.5 Using Priors

In the previous section we discussed how prediction accuracy can be improved by using

previous solutions to similar problems. But even better than that is to have a probabilistic

model for how our solution coefficients were generated. This model then can act as a prior

over the coefficients we are learning, and therefore be used to push our results towards a

priori more likely solutions.

For instance, if this prior is a multivariate normal, or can be locally approximated as

one around the most likely solution coefficients, we can incorporate this information into the
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Ridge Regression problem by further modification to the regularization term. In particular,

we can write:

wb,Λ = argmin
w

m∑
i=1

(X iᵀw − yi)2 + λ(w − b)ᵀΛ(w − b)

where Λ is a matrix that is proportional to the precision matrix (i.e. the inverse of the

covariance matrix) of our normal prior on the solution coefficients. Applying this method

with the same setup as the previous section, we use the inverse of the covariance matrix of

the 249 coefficient vectors from other related prediction problems to set Λ, and we set b as in

the last section, which models the mean of our prior. As usual we use 10-fold cross-validation

to set λ.

This prior based approach incorporates more external information than we did previously,

and subsequently leads to an improvement in the variance captured. While Ridge Regression

achieves 72%, and Ridge Regression modified as in the last section yields 76%, we now capture

82% of the variance (not shown in the table).

In Chapter 5 of this thesis we explore in greater detail this idea of incorporating priors

into Ridge Regression and generalizing the regularization constant to a full matrix Λ.

1.4.6 Highly Singular Feature Matrix

From a mathematical standpoint, Ordinary Least Squares can be defined as the linear

model whose solution coefficients are given by Equation 1.1. Unfortunatly, when the number

of features exceeds the number of points, the inverse of XXᵀ is not defined. In such cases,

we simply recorded a zero in Table 1.1 for Ordinary Least Squares. However, a slight

generalization to Ordinary Least Squares makes it applicable when the number of features
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exceeds the number of points. We write:

wpseudo = (XXᵀ)†Xy = Xᵀ†y (1.3)

where † means the Moore-Penrose pseudo inverse. This formula agrees with Equation 1.1

when XXᵀ is invertible, but also is defined when XXᵀ is not invertible.

The pseudo inverse has an interesting connection to Ridge Regression. Specifically it is

what we get for λ infinitesimally small, that is:

lim
λ→0+

wridge = lim
λ→0+

(XXᵀ + λI)−1Xy = Xᵀ†y = wpseudo.

Using the pseudo inverse based solution can be viewed as an intermediate between Or-

dinary Least Squares and Ridge Regression, as it does not introduce any free parameters, but

it generalizes Ordinary Least Squares to handle the case of singular feature matrices (one of

the benefits of Ridge Regression). Perhaps surprisingly, there are rather simple cases where

the pseudo inverse based algorithm actually outperforms Ridge Regression, when Ordinary

Least Squares is not defined. We show one such case in the “Singular Fts” row of Table 1.1.

Whereas Ridge Regression captures 16% of the variance, the pseudo inverse based method

captures 21% (not shown in the table), despite Ridge Regression having the choice of λ ≈ 0

available to it. Hence, this underperformance of Ridge Regression can be viewed as a failure

of k-fold cross-validation to do its job of selecting the best λ.

It is tricky to generalize about precisely when this kind of case will occur, other than

29



to say that if the truly optimal λ is approximately zero, then the pseudo inverse method

is safer than Ridge Regression, since we do not run the risk of getting an erroneously high

λ. In our experiments, outperformance of the pseudo inverse based algorithm over Ridge

Regression occurred when the number of points was 100 and the number of features 400, but

otherwise all settings were identical to the default case7.

We note from Table 1.1 that principal component analysis based regression (PCA) also

performs well in this case, capturing 20% of the variance. This algorithm reduces the di-

mensionality from 400 down to 84 on this case, before running Ordinary Least Squares. It

seems that the unusually good accuracy comes from the algorithm being able to discard most

features without losing much information, reducing this to an easier problem than attempting

to directly learn coefficients for all 400 dimensions.

A note about implementation is warranted here. In this chapter, we implement our al-

gorithms using numpy, which is the standard scientific computing package for the Python

programming language. There are at least four ways to implement Ordinary Least Squares

using numpy, and they have quite different running times. In fact, we have seen the difference

in speeds between the fastest and slowest differ by 5x-20x in different runs (when the number

of points and features were about equal). From fastest to slowest, these approaches to

implementing Ordinary Least Squares with numpy are:

• w = solve(XXᵀ, Xy), using a linear equation solver, which uses an LU decomposition

with partial pivoting and row interchanges.

• w = inv(XXᵀ)Xy, using a matrix inversion algorithm, which applies solve(A, I) to

7We note, however, that with two choices of random seed (one with no intercept, one with an intercept
achieved by adding a feature of all ones) we saw Ridge Regression perform better on this test case than the
pseudo inverse based algorithm, though with all of the other random seeds that we tried the pseudo inverse
method was superior.
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perform the inverse, where I is the identity matrix.

• w = lstsq(Xᵀ, y), using a least squares solver, which computes the singular value

decomposition in order to solve the least squares problem.

• w = pinv(Xᵀ)y, using a pseudo inverse algorithm, calculated by again making use of

the singular value decomposition.

Both the lstsq and pinv algorithms take a parameter rcond. As explained in the numpy

documentation, singular values are set to zero if they are less than rcond multiplied by the

largest calculated singular value. This raises a few important issues.

First, it is true that in theory Equation 1.3 defines a strict generalization of Ordinary

Least Squares that allows for cases where there are more features than points. At first glance

then, it seems desirable to simply discard with Ordinary Least Squares as it is traditionally

defined, and use this pseudo inverse based algorithm instead. But doing so can come at a

5x-20x increase in running time!

Second, saying that we have implemented Ordinary Least Squares is ambiguous, since

different implementations can have somewhat different behavior. But this is even more so the

case with the pseudo inverse variation of Ordinary Least Squares defined by Equation 1.3,

because the pseudo inverse in actual practice has a free parameter, which is the threshold

rcond for deciding when a singular value should be treated as zero. Due to rounding error, we

never expect to get precisely zero singular values, yet it is essential that the pseudo inverse

be able to take the reciprocal only of non-zero singular values, hence the need for such a

threshold. Ideally, the “zero” singular values will be so close to zero, and the non-zero singular

values sufficiently large that any reasonable choice of rcond will give the same results, but
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this is not guaranteed. We conclude that this pseudo inverse generalization of Ordinary Least

Squares is theoretically preferable to the regular version, but it is not necessarily preferable

in practice.

1.4.7 Varying Point Noise

In the “Varying Pt Noise” row of Table 1.1 we consider a case that is just like the default

case, except that we use a noise-to-signal ratio of 1.5 instead of 0.3, and the label noise added

to each point is generated from independent normal distributions with different standard

deviations (rather than all sharing the same standard deviation). In particular, the standard

deviation of the normal distribution from which the ith point’s additive label noise is drawn

is given by
(
||Xi||2

10

)20

. The effect of this is that some points are very reliable (when they

have small 2-norm), and others very unreliable (when they have large 2-norm). Due to the

high overall level of label noise, Ordinary Least Squares only captures 21% of the variance,

and Ridge Regression 23%. But if the standard deviations of the noise levels for each point

were known we could do better. This might happen, for instance, if the labels for each point

came from a measurement made by a device, and the noise characteristics of the device

were known to depend in a certain way on the sample being measured. To improve our

accuracy, we simply reweight our points based on how reliable each is expected to be, using a

generalization of Ordinary Least Squares that takes into account a point weight matrix, V,

whose ith diagonal element is the weight assigned to the ith point. The solution coefficients

are then given by:

wweighted = (XVXᵀ)−1XV y

To demonstrate how point weighting can improve accuracy when knowledge of each point’s

potential noise level can be estimated, we use a very simple weighting scheme, assigning V i
i

to be the reciprocal of the standard deviation of the normal distribution that generated the
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label noise for the ith point. This weighted variant of Ordinary Least Squares captures 30%

of the variance, a substantial improvement over the other algorithms.

In Chapter 2 of this thesis we discuss strategies for weighting low quality data points

less than high quality data points.

1.5 Ridge Regression and Ordinary Least Squares Un-

able to Learn

In some cases it is not simply that Ridge Regression and Ordinary Least Squares have

suboptimal performance, but that they are essentially incapable of learning at all. Here we

discuss these most extreme cases, and make suggestions as to what can be done about them.

1.5.1 Label Outliers

Having one or more points with training labels far from the other training labels can

destroy the performance of both Ordinary Least Squares and Ridge Regression. We call such

a case a “label outlier”, to distinguish it from a feature outlier. Outliers such as these may

come from various sources, such as human error, measurement error, data corruption, fat

tailed probability distributions, or chance events. Ideally, we would remove extreme label

outliers from our training sample.

We examine the impact of a large label outlier by generating a data set in the same manner

that we create the default case, but then modifying the first point so that it has an associated

label of 100,000. This is a couple of orders of magnitudes larger than the typical label of

largest magnitude in the default case.
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We can see the results of doing so in the “Label Outlier” row of Table 1.1. Ordinary

Least Squares and Ridge Regression, which we would otherwise expect to capture 90% of the

variance in the labels, instead both capture 0%.

The explanation for the poor performance of these algorithms in the presence of a la-

bel outlier is simple. Examining Equations 1.1 and 1.2 we see that both depend linearly

on the label column vector y, and therefore on the label outlier. The only advantage that

Ridge Regression has here comes from its ability to choose a large λ through k-fold cross-

validation. A large λ is chosen to try to prevent the outlier from having a large influence

on the solution, but as a consequence, prevents all other points from having an impact on

the solution as well, leading to solution coefficients that are all approximately zero. Label

outliers can be handled by either detecting them explicitly and clipping (i.e. winsorizing)

them or removing them from the training set, or by systematically assigning smaller (carefully

selected) weights to points that appear to be more extreme than to points that are less extreme.

In Chapter 3 and Chapter 4 of this thesis we explore techniques for handling label out-

liers.

1.5.2 Heavy Tailed Features

Another way to cause Ordinary Least Squares and Ridge Regression to fail is to use

features that span an extremely wide range, for instance by choosing them from a very heavy

tailed distribution. In this case we choose the matrix X in just the same manner as the

default case, but then instead of using X as our features, we use 32X , where the power is

taken element-wise. This leads to features that follow a log-normal distribution. All other
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aspects of this case follow the default case, so the underlying model is still linear. But a

linear model applied to log-normal features produces an extreme distribution for the labels,

as shown in Figure 1.1. And as can be seen in the “Heavy Tailed” row of Table 1.1, all of the

algorithms listed have great difficulty in this case, capturing approximately 0% of the variance8.

It could be argued that the squared loss function, which is what Ordinary Least Squares

and Ridge Regression both attempt to reduce, is probably inappropriate in this case. If we

temporarily remove from the testing labels just the lowest and highest one thousandth of the

values, it causes the variance of the testing labels to fall by about 59%. While certainly these

tail values are “outliers” in the sense of being extreme, they cannot be considered outliers in

the sense of being erroneous data. Since they are in the test set, we cannot simply remove

them. Quite the opposite, the most extreme values account for most of what matters in

these predictions when the squared loss function is used. So either the loss function will need

to be reconsidered, or one must focus mainly on predicting the most extreme values. This

latter option is a challenging prediction problem, since these extreme values represent a small

percentage of the data, and even the extreme values can be at quite different scales.

1.5.3 Non-Linearities

Perhaps the most obvious way of breaking Ordinary Least Squares and (linear) Ridge

Regression is to use labels generated from a non-linear model. One such example is shown

in the row “Non-Linear” in Table 1.1. This test case is just like the setup of the default

case, except that the labels are generated by a linear model applied to the element-wise

absolute value of the features, rather than a linear model applied to the features directly.

This renders linear models worthless since, for the absolute value function applied to each

8With a few random seeds, we found cases where an algorithm was able to capture some of the variance,
but there was little consistency to this pattern.
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individual feature, on average there is no trend either upwards or downwards in the rela-

tionship between each feature and the labels. All algorithms shown in the table capture 0%

of the variance. The simplest way to allow Ordinary Least Squares and Ridge Regression

to learn in this context is to switch our features (e.g. generating new features from the

existing ones, so that the problem becomes approximately linear in the new features, even

though it isn’t in the original features). Relatedly, for Ridge Regression we have the option of

switching to a non-linear kernel function as our method of measuring the similarity between

points. With an appropriately selected kernel, we will then be able to model non-linearities,

including the element-wise absolute value function that is used as the non-linearity in this case.

In Chapter 5 of this thesis we discuss the process of kernelizing Ridge Regression.

1.6 Conclusion

In this chapter we have investigated the performance of Ordinary Least Squares regression

and Ridge Regression on one default case where learning is easy, and on thirteen other cases

(derived from the default case) where it is significantly more challenging for one or both of

these algorithms to learn. Each case is designed to illustrate a principle about how Ordinary

Least Squares or Ridge Regression can break down, or how they can be improved. Our major

findings, somewhat oversimplified, are as follows:

1. Ridge Regression can have an advantage over Ordinary Least Squares when there are

few features per point, when there is a high level of label noise, and when their are

many correlated, noisy features.
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2. Ordinary Least Squares can outperform Ridge Regression though when there are feature

outliers in the data.

3. Ridge Regression can be outperformed by Lasso Regression in situations where there

are either very few useful features (out of a large set of features), or where there are

many useful features of highly varying usefulness levels in a setting where overfitting is

likely.

4. Ridge Regression can be thrown off in certain circumstances when the features of the

data are not normalized.

5. When prior information is available either about solutions to similar problems, or about

the prior distribution from which the current problem was drawn, this information

can be used to improve prediction performance by modifying Ridge Regression to

encapsulate this prior information.

6. In certain cases where the feature matrix is highly singular, a modified Ordinary Least

Squares algorithm that uses the pseudo inverse instead of the regular inverse can

outperform even Ridge Regression.

7. When information is known about how noisy each point label is expected to be, it can

be incorporated into the prediction algorithm to improve accuracy.

8. If there are extreme label outliers, or a very heavy tailed distribution from which our

features were drawn, or a highly non-linear model from which our labels were generated,

this can prevent Ridge Regression and Ordinary Least Squares from learning at all.

An overarching takeaway from these examples is that Ridge Regression tends to be more

reliable than Ordinary Least Squares. But as reliable as Ridge Regression is, we have shown

that one can still outperform it in a wide variety of circumstances, even when the underlying
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model that generated the data is linear. Additionally, we have given examples where Ridge

Regression and Ordinary Least Squares essentially cannot learn at all. In such cases, a

machine learning practitioner’s detailed understanding of the problem at hand is critical for

achieving accurate predictions.
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Label Rank vs. Label Magnitude for “Heavy Tailed” Case

Figure 1.1: Here we have a log-plot of the test set labels for the “Heavy Tailed” case, with
the x-axis showing us the rank of that label’s magnitude compared to the other 40,000 test
set labels, and the y-axis showing us the actual magnitude of the label. As we can see, this
setup causes a small fraction of points (those at the right in the graph) to have very extreme
values.
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Part III

Fixing What Can Go Wrong
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Chapter 2

Parameterized Weight Functions:

Making Bad Data Count Less

In Chapter 1 we investigated many ways that machine learning algorithms can make

suboptimal predictions. Now, we analyze in greater depth one such way, specifically, when

the training data points vary substantially in quality. In such a scenario, we may have a

direct measure of the quality of each data point, or we may only have access to a variable that

correlates with data point quality. The question of how such information should be handled

is pervasive, as it affects not just machine learning, but nearly any statistical estimation

technique.

Intuitively, if some data points are better than others, we want to weight the higher quality

data points more than the lower quality ones. Essentially, we have to devise a mapping from

our measure of data point quality into the weight we assign each point. A “one size fits all”

solution will not work, since quality can be measured in many different ways, and different

such functions will be needed depending on the measure of quality. We have flexibility in

choosing such a mapping, but we are not free to choose any mapping that we like. In this

41



chapter we explore the rules that govern these mappings, and how to construct mappings

that satisfy all of the relevant rules. We produce a flexible framework for constructing

functions that map point quality into point weight. These weights can then be plugged into

the statistical estimation technique of interest, to adjust how much each data point counts.

With this theory in hand, we will then explore a particular application of it in the context of

regression in Chapter 3.

We now discuss different meanings of data point “quality”, provide examples where data

quality variability might arise, and introduce the notion of a “Weight Function”, our approach

to designing mappings from point quality to point weight.

2.1 Introduction

It is common when performing analysis on data that not all data points are equally good.

For instance, data points may differ in how characteristic they are of the group one hopes to

draw conclusions about, in how reliably measured they are, or in how “outlier-like” they are.

In other words, some data points are worse and some points are better, and ideally we would

assign a weight to each data point so that bad data counts less in our analysis than good

data.

In practice, researchers usually perform analysis of data in one of two ways. Either they treat

all data points equally (i.e. do not take into account how good or bad each data point is)

or they draw an arbitrary cutoff point, saying that any data worse than the cutoff will be

discarded completely (i.e. assigned 0 weight) and any data that is less than that bad will

count fully in the analysis. But most of the time the “badness” of data lies on a continuous

scale. It therefore is sometimes much preferable to weight points in a continuous fashion,
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giving worse points less weight rather than counting each data point as either fully included

or fully excluded. This is particularly true when performing data analysis on relatively small

samples, where analysis can be compromised by a few very bad data points, yet throwing away

data is costly. One bad outlier out of fifty points can ruin a standard deviation calculation,

yet if we remove data too aggressively we may both bias our result and increase the variance

of our estimate.

We provide a mathematical framework for thinking about how to convert a measure of

poor data point quality, which we will call the “badness” z, of a data point, into a weight,

v(z). These weights can be used in data analysis to count bad data points less than good

ones. Most statistical calculations and machine learning algorithms can be easily extended to

work with weighted data. For instance an average can be replaced with a weighted average,

and least squares regression can be replaced with weighted least squares regression. The

main question then is how these weights v(z) should be produced once we already have a

badness z for each data point.

Consider four example scenarios where questions about how to map data quality into

data point weights may arise:

1. A psychologist wants to know whether depressed patients get less sleep, on average, than

non-depressed patients. But the survey the psychologist uses to measure depression

does not have a well-defined cutoff to say who exactly is, or isn’t depressed. The survey

measures depression on a continuous scale. If the researcher picks a stark cutoff for

what it means to be “depressed” (say, a score of at least 50 out of 100 on the depression

scale) then that has strange implications, as it treats those with a score of 50 (who are

barely representative of depression) identically to those with a score of 75 (who are
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much more representative), and people with a score of 49 get ignored entirely despite

being extremely similar to those who get scores of 50. So then we might ask: what are

the psychologists options for computing the average level of sleep for depressed people,

taking into account the fact that depression is not binary?

2. A social scientist has collected data from a hundred people about their views on gun

control via interviews. The social scientist also has constructed a “unreliability” score

for each person surveyed, based on whether their answers were self-contradictory or

seemed like they were merely intended to please the interviewer. What are the social

scientists options for counting the less reliable information less in their analysis of the

data?

3. A physicist has made a series of repeated measurements. The physicist does not

directly know the measurement error in each case, but has collected a variable for each

measurement that is known to correlate with the measurement error. When analyzing

the data, what are the physicists options for taking into account this correlate of the

measurement error so as to count the more accurately measured data more than the

less accurately measured data?

4. A machine learning researcher has developed a new method for scoring whether a data

point is an outlier. What are this researcher’s options for reducing the weight of points

based on how outlier-like they seem, so that the more outlier-like points do not corrupt

the result of running a regression algorithm?

In all of the above examples, assigning a weight to each data point could resolve the

question at hand. For instance the psychologist in the first example, instead of taking the

mean
∑m

i=1 si of the sleep values si, could assign the weight vi to the ith data point based on

his measure of badness zi, and then take the weighted mean
∑m

i=1 visi where the vi satisfy
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vi ≥ 0 with
∑m

i=1 vi = 1. However, it is unclear how to produce these weights from vi from

badness scores zi associated with each point. Clearly we want points with higher badness

to have lower weight, but beyond that we can wonder whether all options are equally good,

such as:

vi =
1
zi∑m
i=1

1
zi

or vi =
e−zi∑m
i=1 e

−zi
.

Certainly some choices must be better than others. We now consider what properties any

function v(z) that maps a badness zi into a weight vi should have.

2.2 Weight Functions

Suppose that we have a matrix X with one data point X i per column, and for each point

we have a score zi that reflects some notion of badness for the point. Recall, a data point

could have a larger badness due to being less characteristic of the group of interest, or because

it is less reliably measured, or because it is more outlier-like than other data, or for some

other reason. But regardless of the cause, data points with more badness should be counted

less when performing analysis compared to data points with less badness, and our goal is

to assign weights to the data points to reduce the total badness to make our analysis more

accurate or more representative of what we are attempting to calculate. We assume zi ≥ 0,

so that zi = 0 means that a point is as good as possible. This assumption that badness

has a minimum value makes sense in many contexts (e.g. when badness reflects variance,

measurement error, outlierness, or non-representativeness of a group). Hence in this context

a point can’t be arbitrarily good, it can only be not at all bad (i.e. z = 0) reflecting the fact

that it should not have its weight reduced at all during our calculations.

We would like to construct a function v(zi) that maps the badness zi of each point X i
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to a weight that we will assign to that ith point during data analysis. We will call such a

function a “Weight Function” if it has certain desirable properties that make it suitable for

this purpose. Here, we assume that a weight of 1 is the maximum weight for a point (i.e. the

point has the normal, full weight). Hence, we assume our function v(z) takes values in the

range 0 (no point weight) to 1 (maximum point weight). This choice of 1 for the maximum

is not essential, the key is that the function must have a maximum, as we do not want to

assign arbitrarily large amounts of weight to a single point, which would lead to highly biased

analyses based on the data. Using 1 is simply a convenient choice.

It is important to note that the functions v(z) will generally assign points unnormalized

weights, meaning that the weights will not generally sum to 1. Hence the weights output by

such a function will generally need to be normalized before they are used in data analysis. This

is done by dividing each weight by the sum of all weights, causing the weights to then sum to 1.

Later on, we will introduce a real-valued free parameter α into these functions, produc-

ing what we call “Parameterized Weight Functions”. This parameter α will determine how

harshly the function reduces the weight of points of higher badness relative to ones of lower

badness. For now, however, we assume our weight functions have no free parameters.

We would like our Weight Functions v(z) to have a number of properties that make them

suitable as a way to map badness into point weights. Intuitively, they should assign a value of

1 (i.e. maximum weight) to points that are not bad at all, they should not give more weight

to points that are more bad than points that are less so, they should assign arbitrarily close

to 0 weight to points that have arbitrarily large badness, they should limit the maximum

amount of badness a point can have after weighting that point, and they should look like

a uniform weighting of points for those points that are arbitrarily close to being not-at-all-bad.
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The following formally defined function properties are designed to capture these intuitions.

Any real-valued function that has all of the properties listed below, we will call a “Weight

Function”, and will be valid for consideration as a way of mapping badness values z into

weights v(z).

Properties that define a Weight Function v(z)

1. Domain: v(z) is defined on z ∈ [0,∞), since we use 0 to mean that a point is not

bad at all, but a point can have arbitrarily high badness. For instance, in regression

a point can be perfectly on the regression line of the other points (0 badness) or

it can be arbitrarily far away from the other points (arbitrarily high badness). As

another example, a point can be associated with no measurement error (0 badness)

or can have arbitrarily high measurement error (arbitrarily high badness).

2. Range: v(z) ∈ [0, 1], since we use 0 to mean that a point is given no weight (and

is hence totally ignored from all analysis), and a 1 to mean that a point is given

the maximum possible weight (when that point is not bad at all).

3. Monotonicity: v(z) must be a non-increasing function of z, since a point with

greater badness should not have more weight than a point with less badness. This is

clear since the purpose of introducing the notion of Weight Functions is to provide

less weight to points with greater badness.

4. Maximum: v(0) = 1, since when the badness z is 0 the corresponding point is not

bad at all, so should have maximum weight.

5. Boundedness: supz≥0 v(z)z should be finite. Our weights are designed to reduce

the badness of our points overall (once those weights are taken into account).
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The badness of our ith point after it has been weighted by our weight function is

v(zi)zi∑m
j=1 v(zj)

, so if we want our weight function to control the badness of our points

no matter how large the badness gets, then we need supz≥0 v(z)z to be finite. This

will also prevent the average badness, after the points are weighted, from remaining

arbitrarily large. Note that this bound also implies that limz→∞ v(z) = 0, which is

crucial since arbitrarily bad points should have arbitrarily small weight. Otherwise

a single extremely bad point may throw off the results of our whole analysis (e.g.

one very extreme outlier may distort the mean of the whole sample, or one point

with arbitrarily large measurement error throw off our entire analysis).

6. Uniformity: limh→0+
v(h)−v(0)

h
= 0, since points that are nearly not at all bad

should all be treated nearly equally, since that will produce an unbiased estimate

for our calculation of interest. Making the derivative of our weight function at

z = 0 vanish (we use the right derivative since v is only defined for z ≥ 0), implies

that locally the function weights points that are nearly completely non-bad nearly

uniformly. This makes sense because the unbiased way to perform data analysis

with non-bad points is to weight them equally to each other, not to weight some

more than others. It is only by virtue of a point being bad that we want to give it

less weight, so v(z) should locally approximate the uniform distribution near z = 0

by having a 0 right derivative there.

We now introduce a theorem which allows us to easily construct Weight Functions, v(z),

by starting with a non-decreasing function, f(z), and passing it through a special non-linear

transformation designed for this purpose.

Theorem 1 (Characterization of Weight Functions). If f(z) is a non-decreasing, non-constant
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real-valued function defined on z ∈ [0,∞) which is continuous in some interval containing

z = 0 (and which optionally may take on the value +∞), then the function v(z) defined as

v(z) =
1

1 + z(f(z)− f(0))

satisfies all of the properties above and therefore is a Weight Function. Additionally, any

Weight Function v(z) can be written in the form above for some choice of f(z), though f(z)

will only be non-decreasing when 1
v(z)z
− 1

z
is non-decreasing.

We note that f(z) does not need to be differentiable, and does not even need to be

continuous (except near z = 0). It also does not need to be finite valued, but since it is

non-decreasing, if it is ever equal to +∞ it must remain at this value for all larger z as well.

Proof. We show, one by one, that each of the properties of a Weight Function is satisfied for

any function v(z) of the form specified in Theorem 1.

1. Domain: By the definition of f(z) the domain of v(z) is z ∈ [0,∞).

2. Range: v(z) is of the form 1
1+g(z)

for g(z) a non-negative function, and therefore is in

the range [0, 1].

3. Monotonicity: v(z) will be non-increasing whenever z(f(z)− f(0)) is non-decreasing.

But z and (f(z)−f(0)) are both non-negative and non-decreasing since f(z) is assumed

to be non-decreasing and z ≥ 0. Therefore the product of these factors, z(f(z)− f(0)),

is non-decreasing.

4. Maximum: v(0) = 1
1+0(f(0)−f(0))

= 1.

5. Boundedness: supz≥0 v(z)z = supz≥0
z

1+z(f(z)−f(0))
= 1

infz≥0

(
1
z

+(f(z)−f(0))
) . The only

way this supremum can be infinite is if both of the positive terms 1
z

and (f(z)− f(0))
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approach zero simultaneously. But for small z when the latter term approaches zero

the former term 1
z

gets large. And as z grows arbitrarily large causing the former term

to approach zero, the latter term (f(z) − f(0)) will always remain above a positive

constant due to f(z) being non-decreasing and non-constant. Hence, the supremum is

bounded.

6. Uniformity: limz→0+
v(z)−v(0)

z
= limz→0+

1
1+z(f(z)−f(0))−1

z
= limz→0+

1
z
−z(f(z)−f(0))
1+z(f(z)−f(0))

= 0

since f(z) is assumed to be continuous near 0.

So far, we have shown that any function of the above form will have the properties of a

Weight Function. But when can a given Weight Function v(z) be written in that form? To

find out, we consider the form of interest:

v(z) =
1

1 + z(f(z)− f(0))
.

We assume that z > 0 and that we are excluding any z where v(z) = 0. Then we rearrange

to solve for f(z). This gives us:

f(z) =
1

v(z)z
− 1

z
+ f(0).

Since by definition v(z) is defined on the domain (0,∞), and 1
z

is defined and finite in

this domain, this function f(z) is also defined and finite in this domain. For all z where

v(z) = 0, we simply define f(z) = +∞, which is permitted in the definition of f(z). For

z = 0, which is the only remaining problematic point, we define f(0) using the right hand

limit f(0) ≡ limz→0+ f(z). This gives us:

lim
z→0+

1

v(z)z
− 1

z
+ f(0) = lim

z→0+

1

z

(1− v(z)

v(z)

)
+ f(0) = − lim

z→0+

1

v(z)

(v(z)− v(0)

z

)
+ f(0)
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= − lim
z→0+

1

1
0 + f(0) = f(0)

as expected, where we applied the properties that define v(z). Hence, to express v(z) in the

desired form as function of f(z), we can choose f(z) = 1
v(z)z
− 1

z
for z > 0, and f(z) will be

non-decreasing precisely when 1
v(z)z
− 1

z
is.

We now extend our definition of a Weight Function by introducing a real-valued free

parameter α. We will call this new type of function a “Parameterized Weight Function”

and will write it vα(z) instead of v(z). This α parameter controls how strongly we reduce

the weight of points based on on their badness. At one extreme (α = 0) badness is not

down-weighted at all (every point is assigned an equal weight of 1), and at the other extreme

(α =∞) bad points are down-weighted as harshly as possible. Hence, we can think of vα(z)

as a family of Weight Functions with a harshness (i.e. how much increased badness reduces a

point’s weight) determined by α. Since the appropriate level of harshness is determined by

whatever problem our Weight Functions are being applied to, it is convenient to introduce

this as an explicit parameter.

Properties that define a Parameterized Weight Function vα(z)

1. Weight Function Family: vα(z) must satisfy all of the properties of a Weight

Function for each fixed α > 0.

2. Monotonicity: vα(z) must be a non-increasing function of α, since α quantifies

the harshness of the weight function.

3. Equal Treatment: v0(z) = 1, since when we choose α = 0 we want to reduce the

weight of bad points as little as possible, so in other words all points should receive

the same weight no matter how bad each is.
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4. Extreme Treatment: limα→∞ vα(z) = 0 when z > 0, since when we choose α

approaching infinity we want to reduce the weight of bad points the maximum

amount possible, so in other words, all points that are even the slightest bit bad

(i.e. that have z > 0) receive no weight.

Theorem 2 (Characterization of Parameterized Weight Functions). If v(z) is a Weight

Function, then v(αz) is a Parameterized Weight Function. Hence, if f(z) is a non-decreasing,

non-constant real-valued function defined on z ∈ [0,∞) which is continuous in some interval

containing z = 0 (and which optionally may take on the value +∞), then the function vα(z)

defined as

vα(z) =
1

1 + αz(f(αz)− f(0))

satisfies all of the properties above and therefore is a Parameterized Weight Function.

Proof. The symmetry between α and z cause the properties for a Weight Function (with

respect to z) to immediately imply the properties of a Parameterized Weight Function (with

respect to α).

2.3 Generating Parameterized Weight Functions

Applying Theorem 2, it is straightforward to generate Parameterized Weight Functions,

vα(z), which for each α > 0 represent valid functions for mapping each point’s badness z

into a corresponding weight that will be applied to that point. All we have to do is take

a non-decreasing function f(z) that is continuous at 0 and the theorem will produce a

Parameterized Weight Function for us. We show a number of examples in Table 2.1, each

generated using a different choice of f(z). For all examples where a constant p appears, it is

assumed to be a strictly positive real number.
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List of Parameterized Weight Functions

f(z) vα(z) supz≥0 z vα(z)

zp 1
1+(αz)p+1

1
α
p

p
p+1

p+1

ez−1
z

1
eαz−αz

1
α

1
e−1

ez
p+1−1
z

e−(αz)p+1 1
α
e−

1+log(p+1)
p+1

1
1−zp if z < 1 otherwise ∞ 1−(αz)p

1−(αz)p+(αz)p+1 if z < 1
α otherwise 0 < 1

α

0 if z < 1 otherwise ∞ 1 if z < 1
α otherwise 0 1

α

Table 2.1: Some Parameterized Weight Functions, along with the functions f(z) used to
construct them by applying Theorem 2, and their bounding constants.

The last row in Table 2.1 corresponds to what is, in a sense, the simplest Parameterized

Weight Function. It uses a stark cutoff of 1
α

, and any point with a badness z less than this

cutoff gets a full weight of 1, while all other points get 0 weight. The second to last option

in Table 2.1 is a smoother variation of this. Any point with z ≥ 1
α

still gets a weight of 0,

but for 0 < z < 1
α

the weights are strictly between 0 and 1. The first three functions in the

table are smoother still, as they assign weights strictly between 0 and 1 to all points with z > 0.

Note that adding a constant to any such function f(z) does not affect the correspond-

ing vα(z). Also note that there are some interesting functions that nearly but not quite

satisfy our necessary conditions for a Parameterized Weight Function: choosing f(z) = 1

yields vα(z) = 1, which is not a Parameterized Weight Function because it does not have the

required limiting behavior with respect to α and also because supz≥0vα(z)z is not bounded.

On the other hand, the function vα(z) = 1
1+αz

nearly satisfies all the requisite conditions

except that it does not have a 0 derivative at z = 0.
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Parameterized Weight Function

0.2 0.4 0.6 0.8 1.0
z

0.2

0.4

0.6

0.8

1.0

vα(z) for α = 0,1,2,3,4,5

Figure 2.1: A sample Parameterized Weight Function vα(z) = 1
1+z4α4 plotted as a function of

z for α = 0, 1, 2, 3, 4, 5.

2.3.1 Polynomials

Can a function that is a polynomial in z be a parameterized weight function? No,

because polynomials cannot both be equal to 1 when z = 0 and approach 0 as z → ∞.

But we can construct polynomial-like parameterized weight functions. For instance, we can

construct a useful parameterized weight function that is (a) piecewise polynomial and (b) twice

differentiable using the following procedure: starting with the odd looking non-decreasing

function

f(z) ≡


0 z < p

1
z

(
16

(p−z+2)3(3p2−3p(2z+1)+3z(z+1)+2)
− 1
)

p ≤ z ≤ p+ 2

∞ z > p+ 2,
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which is defined for any p ≥ 0, we generate a parameterized weight function vα(z) by applying

Theorem 2:

vα(z) ≡


1 z < p

α

1
16

(p− αz + 2)3 (3p2 − 3p(2αz + 1) + 3αz(αz + 1) + 2) p
α
≤ z ≤ p+2

α

0 z > p+2
α

.

We can gain a deeper understanding of this function by performing the change of variables

a ≡ p
α

and b ≡ p+2
α

, yielding:

va,b(z) ≡


1 z < a

(z−b)3(10a2+z(3b−15a)−5ab+b2+6z2)
(a−b)5 a ≤ z ≤ b

0 z > b

.

This “polynomial” Weight Function is twice differentiable in z for all z > 0 (its first and

second derivatives at both a ≡ p
α

and b ≡ p+2
α

are well defined and equal to zero, and it is of

course continuous at these points as well). As z increases, this function starts strictly at 1

until it hits z = a at which point it slopes down monotonically as a fifth degree polynomial

in z until it hits z = b where it then remains at zero forever after (see Figure 2.2). It is a

piecewise polynomial not just in z, but (when using the appropriate parameterization) also

in p and α, though it is not a polynomial in a and b. Piecewise polynomials that are k-times

differentiable are as close as we can get to polynomials in this world of Weight Functions.

The particular function va,b introduced above is quite useful because it allows us to specify

the badness level at which full weight ends (denoted “a”) and the badness level at which zero

weight begins (denoted “b”), corresponding to the cutoffs for a point being considered as

good as possible and as bad as possible, respectively.
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Polynomial Weight Function

Figure 2.2: A twice differentiable piecewise polynomial Weight Function.

2.4 Speed of Decrease

Let us consider how quickly Parameterized Weight Functions of the form v(αz) decay as

functions of z. We have:

vα(z)z = v(αz)z ≤ sup
z≥0

v(αz)z =
1

α
sup
u≥0

v(u)u =
c

α

for some finite c > 0, since by definition supz≥0 v(z)z is finite. Therefore we have:

vα(z) ≤ 1

α

c

z
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where c is a constant that depends on the shape of the function vα(z), but not on α or z.

Hence, one interpretation for α (when considering Parameterized Weight Functions of the

form generated by Theorem 2) is as a parameter for controlling this upper bound on how

fast the function decreases. This bound also implies that while Weight Functions need not

be probability density functions nor even integrable functions, they do have to decay at least

as fast as 1
z
. This rate of decay, however, is not typical: all the examples considered above

decay faster than 1
z
.

2.5 Badness Range

The preceding discussion assumes that we already have a notion of badness defined for

our data points of interest, whether it be some measure of outlierness, measurement error,

representativeness of the group of interest, or something else. The switch from Weight

Functions to Parameterized Weight Functions removes our need to worry about the unit of

our badness scores, because α will play the role of setting this unit. But is is worth noting

that if our badness scores are not naturally able to cover the range [0,∞) or [0,∞] we may

want to modify these scores before plugging them into a Weight Function. For instance, if

our scores z are in the range [q,∞) we can simply subtract q from each score. Or if they are

in the range [q, r] then we can apply a monotonic map such as

z → 1

1− z−q
r−q
− 1

so that the new range is [0,∞] before a Weight Function is used.
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2.6 Weighted Least Squares

A simple example of a Weight Function arises naturally in the context of Ordinary Least

Squares regression. From a statistics (as opposed to machine learning) perspective, if all

the underlying variables being used in our linear model are normally distributed, plus our

prediction errors are uncorrelated both with each other and with the other independent

variables and the standard deviation of the prediction errors are all the same with zero

expected values, then it is desirable to leave our data points unweighted. The Gauss-Markov

theorem tells us that the standard (unweighted) Ordinary Least Squares solution is the “best

linear unbiased estimator”. However, if we drop the assumption that the prediction errors

have identical standard deviations, then the points have to be weighted to produce the best

linear unbiased estimator. In particular, theory says that the ith point should be weighted by

1
σ2
i
, where σi is the standard deviation of the ith error (Draper and Smith, 1981). In practice

though, this formula should not be used since it blows up to infinity. The standard deviations

of each error are not actually known to infinite precision, and in almost all cases have to

be estimated from the data. An erroneously low standard deviation estimate will cause the

corresponding weight to explode, causing poor prediction performance. Hence, this formula

is often adjusted to prevent exploding weights by writing 1
ε+σ2

i
, for some small ε > 0 which

smooths out the standard deviation estimates. If we use z = σi as our measure of the badness

of a data point, this corresponds precisely to one of our standard Weight Functions, 1
1+(αz)2

.

Since this function will be normalized to have its weight sum to 1, α plays a role analogous

to 1
ε
. As α → 0 we reconstruct the uniform weighting which is optimal when all standard

deviations are the same. On the other hand, as α → ∞ we reconstruct the theoretically

optimal (but impractical) weight 1
σ2
i
.
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2.7 Selecting a Parameterized Weight Function

There is an infinite number of Parameterized Weight Functions to choose from. It would

require extra information that the practitioner happens to know about his or her problem

domain to narrow this infinite space down to just one function. Fortunately, there are many

commonalities between all such functions, giving them a similar shape. They all start at 1

(for z = 0), then remain near 1 for a time as z increases, then monotonically decay down

to zero (for large z), falling at a rate no slower than c
z
, for some constant c (which might

depend on α). When the Parameterized Weight Function is of the form v(αz), the bound

becomes c
αz

, where c now does not depend on α. Given the striking similarities between all

such functions, for a variety of practical purposes it will be sufficient to consider just one

family of Parameterized Weight Functions, indexed by a parameter p > 0. We can think of

α and p together determining where the function begins to descend substantially and how

quickly it does so, or in other words, how wide of a flat top the function has near z = 0 and

by what point it is assigning nearly zero weight. One useful family of parameterized weight

functions is given by:

vα(z) =
1

1 + (αz)p+1
.

For this family of functions we can conveniently set α and p if we have an intuition about

two points that the weight function should pass through.

2.7.0.1 Using Two Fixed Points

Consider again our example where a psychologist wishes to estimate the mean amount of

sleep for depressed individuals in a sample. Scores on a depression inventory serve as a proxy

for how closely each person fits the term “depressed”. So if the depression test is out of 100
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points, the psychologist may define the badness scores z using z = 100− d, where d is the

depression score of each individual. This choice simply causes the badness scores to be in the

desired range z ≥ 0, with a 0 badness for people who have the maximum possible depression

score d = 100 (they are truly depressed by any definition), and a larger badness for anyone

with a depression score lower than this. The exact function used to convert test scores into

badnesses is not critical (e.g. another choice could be z = 100
d
− 1, which could be desirable

because it would cause the badness scores to cover the domain [0,∞], but we consider the

former option here just for simplicity).

To choose vα(z) the psychologist can make use of his or her intuition about two points

in our sample. If the psychologist can select an appropriate weight v0 > 0 to assign any

individuals who have a score z0, and an appropriate weight v1 (where 0 < v1 < v0) to assign

to individuals with a score of z1 (where 0 > z1 > z0). Then we can solve for α and p in the

pair of equations: vα(z0) = v0 and vα(z1) = v1, which yields:

v(z) =

(
1 +

1− v0

v0

( z
z0

) log

[
v0
v1

1−v1
1−v0

]
log

[
z1
z0

] )−1

So for instance, if the psychologist decides that a person with badness score z = 20 should

be considered 90% depressed (i.e. weighted 0.90 of what someone maximally depressed would

be weighted), and someone with a depression score of z = 60 should be considered 10%

depressed, then we can use (z0 = 20, v0 = 0.90), and (z1 = 60, v1 = 0.10) which yields:

v(z) = (1 + z4

1440000
)−1, as seen in Figure 2.3. If the ith depressed patient has sleep score si

and badness zi then to compute the average sleep for depressed individuals such that the

continuum between “depressed” and “not depressed” is taken account, we would then just

compute the weighted average sleep s for depressed individuals as: s =
∑m

i=1
v(zi)∑m
j=1 v(zj)

si.
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Weight Function Fit To Points

Figure 2.3: Sample Simple Weight Function of the form vα(z) = 1
1+(αz)p+1 , with parameters α

and p set from two known points (z0 = 20, v0 = 0.90), and (z1 = 60, v1 = 0.10).

This procedure of fitting p and α using two points will always give us a decreasing function

as long as v1 < v0 and z1 > z0. However it will only technically be a Weight Function when:

z1

z0
<
v0

v1

1− v1

1− v0

because otherwise one of our properties that define a Weight Function that will not be

satisfied (the right hand derivative at 0 will not be 0, meaning it will not locally weight points

uniformly near 0).

2.7.0.2 Using Maximal Weight and Minimal Weight Cutoffs

Consider again our example where a social scientist has constructed an “unreliability”

score for each person he or she has surveyed. It is desirable to reduce the weight of data
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points that have greater unreliability to improve the quality of data analysis. If the sociologist

has an intuitive sense of what cutoff score is low enough that we should consider a person

getting that score “minimally” unreliable, and what cutoff score is high enough that we

can consider a person getting that score “maximally unreliable”, then we can use these two

cutoffs to construct our Weight Function. Anyone data point below the former cutoff will

receive a weight of 1, and any data point above the latter cutoff will receive a weight of

0. The “polynomial” Weight Function va,b(z) that we constructed earlier is an appropriate

choice in this case, with the parameters a and b representing the two cutoffs.

To be specific, let us assume that the sociologist’s unreliability scores are real numbers

in the range of 0 (not at all unreliable) to 5 (totally unreliable), and the sociologist decides

that anyone with a score less than or equal to 1 should be considered totally reliable (and

so gets a weight of 1) and anyone with a score of 4 or higher should be considered totally

unreliable (and so gets a weight of 0). Then the appropriate weight function is simply v1,4(z).

Of course, this function must be normalized before use so that the sum of weights assigned

to all points is always 1.

2.7.0.3 Using External Validity

Consider again the example of the physicist who has collected a series of repeated mea-

surements along with a quantity that correlates with measurement error (which serves as a

measure of badness, z, for each data point). We assume that the correlate of measurement

error is statistically independent of the repeated measurements that were made, otherwise

reducing the weighting of data points based on it may bias the analysis. Now suppose that

the physicist has also measured some third quantity that is known to correlate strongly with

the repeated measurements, which we will call our “external validity measure”. This third

quantity can help us choose a Weight Function, by setting the free parameters of a Weight
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Function family such that we maximize this correlation. The worse a data point is for use in

our data analysis (due in this case to measurement error), the more its inclusion will tend

to negatively impact the correlation between the repeated measurements and the external

validity measure. Hence maximizing the correlation between the repeated measurements and

the external validity measure by weighting data points provides a mechanism for deciding

how low a weight to give to data points of different levels of badness, which means we can

use it to determine α and p in our Parameterized Weight Functions.

We begin with a Parameterized Weight Function family, such as:

v(z) ≡ e−(αz)p+1

Then to set the free parameters α ≥ 0 and p > 0 we simply try different combinations of

these two parameters (e.g. p ∈ {0.5, 1, 1.5, . . . , 5.5, 6} and α ∈ {2−10, 2−9, 2−8, . . . , 29, 210}).

For each such combination we compute the weighted correlation between the repeated

measurements and our external validity measure. The weighted correlation is just like a

regular correlation, except each data point is weighted by v(z) after this function has been

normalized (so that the weight assigned to all the data points sum to one). Whichever

combination of the parameters α and p maximizes this correlation between our repeated

measurements and the external validity measure is our preferred choice of Weight Function

parameters. In more general terms, we learn the parameters of our Weight Function family

using an external quantity for assessing the quality of our (weighted) data points.

2.7.0.4 Using k-Fold Cross-Validation

Consider again the case of the machine learning researcher who has found a way of scoring

how outlier-like (i.e. how “bad”) each data point is for any given training set. For instance, in
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an Ordinary Least Squares context, scoring methods could be those found in Stevens (1984).

Furthermore, assume that the machine learning algorithm that he or she will be using for

making predictions can make use of points weights, which determine how much each point

should count during training. This is true for most popular algorithms. Then, by using a

Weight Function, the machine learning researcher can turn the scores for how outlier-like

each point is into point weights, hence causing the machine learning algorithm to rely less on

outlier-like data and to ignore very extreme outliers altogether. We explore this approach to

automatically handling outliers in the context of Ridge Regression in Greenberg et al. (2016b).

But which Weight Function should the machine learning researcher use to convert outlier

scores into weights? Empirical test cases suggest that the Parameterized Weight Function:

v(z) =
1

1 + (αz)6

is a reasonable choice. This function is very flat around z = 0 and only gradually descends

to 0. We can then select α ≥ 0 using a robust form of k-fold cross-validation. Rather than

selecting the α that gives the lowest error averaged across all k folds (as in regular k-fold

cross-validation, which is not robust to outliers), we instead use the winsorized mean of the

out of sample errors made on all out of sample points during cross-validation. The winsorized

mean is like the regular mean, but it is much more robust to outliers. It is computed by first

replacing any value above the ρ percentile value with the ρ percentile value, and any value

below the 1− ρ percentile value with the 1− ρ percentile value, and only then computing the

mean of the resulting values. Using this approach, the parameter α is automatically learned

from the data based on how much outlier reduction is ideal in the particular training set

being used. This lack of free parameters and automatic reduction of outliers is desirable as it

prevents debates over precisely which data points should be included in regression analysis,
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as was seen for example in a psychology context in Brandt (2012).

2.8 Conclusion

We have introduced the concept of a Weight Function, which represents the set of

reasonable functions one can use to map a measure of how “bad” a data point is into a

weight to be assigned to that point during (nearly any kind of) data analysis. We developed

a framework for easily generating new Weight Functions simply by choosing an increasing

function, and extended this definition tot Parameterized Weight Functions, which are Weight

Functions with one free parameter that determines how harshly bad points should have their

weights reduced. Finally, we discussed how researchers can use their intuition and measures

of external performance to select which Weight Function to use in practice.
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Chapter 3

Stabilized Ridge Regression

In this chapter, we investigate another source of problems for machine learning algorithms

discussed in Chapter 1, namely, outliers in the training data. We investigate types and causes

of outliers, and generalize Ridge Regression to a new algorithm which includes a parameter

for penalizing outliers, while investigating why outliers have a damaging effect on Ridge

Regression in the first place. We also explore some of the drawbacks of common approaches

to removing outliers, such as modifying the loss function. The outlier robust algorithm that

we introduce here leverages the work in Chapter 2 on Weight Functions. While Weight

Functions are not specifically for outlier reduction in particular, they are applicable because

“outlierness” is a measure of data point quality. Here, we limit our discussion of outliers

to a regression context, but in Chapter 4 we discuss approaches for outlier detection in an

arbitrary vector of real numbers.

3.1 Introduction

Despite their extreme popularity as prediction methods, Ordinary Least Squares regression

and Ridge Regression are remarkably non-robust to outliers: the presence of a single “bad”
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data point in the training set of either algorithm can severely damage their accuracy. In this

work, we introduce a new variant of Ridge Regression, Stabilized Ridge Regression, which

automatically accounts for possible outliers in the training data. Rather than handling outlier

removal as a pre-processing step, or changing the loss function that we seek to minimize,

e.g. switching from the L2 loss function to the L1 loss function, the algorithm automatically

adjusts the weights of all data points based on how outlier-like they are. Our approach, which

involves stabilizing the solution coefficients with respect to a point being dropped, operates

by iteratively reweighting the data points and solving the Ridge Regression optimization

problem under each reweighting. In doing so, it prevents extreme points from significantly

harming prediction performance.

Our Python code for implementing Stabilized Ridge Regression is in the public domain, and

can be downloaded at the URL found in the following footnote1.

This chapter is organized as follows: we first introduce two different types of outliers and

discuss the common methods used to handle outliers in practice. We then discuss the desirable

properties for an algorithm robust to outliers. Next, we show that Ridge Regression (and by

extension, Ordinary Least Squares) behaves undesirably in the presence of outliers, and that,

even n-fold cross-validation, which is commonly used to select the tuning parameters of an

algorithm, is problematic in the presence of outliers. Finally, we introduce our Stabilized

Ridge Regression algorithm and demonstrate its performance in several cases of interest.

3.2 Outliers

Outliers, while hard to define formally, intuitively come in two flavors:

1http://spencergreenberg.com/code/doctoral_thesis_machine_learning_code.zip
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1. A “label outlier” is a point with a label that is very large in magnitude relative to what

would be expected from the rest of the data. As straightforward example, if all but

one of the data point labels were generated by a normal distribution with mean 0 and

standard deviation 1, but one data point had a label of 10, we can conclude that this

label almost certainly was not generated from the same distribution as the other points.

We call this point a “label outlier”, and can predict that including it in the training set

will likely have a detrimental effect on the performance of a prediction algorithm.

2. A “feature outlier” is a data point whose feature vector lies very far from other points in

the data set. For instance, if all but one of the data points feature vectors were generated

by a multi-variate normal distribution with mean (0, 0, . . . , 0) and with covariance matrix

equal to the identity matrix, but one of the data points has feature vector (10, 10, . . . , 10)

then it is almost certainly not generated from the same distribution as the other points,

and will likely be harmful to the algorithm’s prediction performance. We would call

such a point a “feature outlier”.

Of course, many real outliers are more subtle than these simple to identify cases, for

instance a point whose label is not excessively large compared to the other labels, but is

excessively large given what its feature vector is. And a real outlier can of course be both a

feature outlier and a label outlier simultaneously, as this classification is not mutually exclusive.

The presence of outliers may have different causes, including input error, machine error,

contamination of one data source with another, extreme chance events, or multimodal or

heavy tailed probability distributions. What all outliers have in common is that they are

risky to include when training a machine learning algorithm. Treating them like other points

tends to make prediction less accurate in comparison with downweighting them.
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3.2.1 Modifying Loss Functions to Mitigate Outliers

We now consider two common approaches to handling outliers, and discuss their limita-

tions. Since most machine learning algorithms can be formulated in terms of minimizing a

loss function, one approach to making such algorithms more robust to outliers is to modify

this loss function. A properly chosen loss function can greatly reduce the impact of extreme

points. The standard L2 loss function of ordinary least squares and Ridge Regression is

especially worrisome from the perspective of outliers because the most poorly predicted

points (including outliers) have the most impact on the solution due to the squaring of

errors. By switching to another loss function, such as Lp for 1 ≤ p < 2, this effect can

be reduced. In particular, the L1 loss function is highly robust against label outliers. A

generalization of this idea, which allows for a wide range of loss functions, is used in the

theory of M-estimation (Huber et al., 1964).

However, changing the loss function has significant disadvantages. First, while this ap-

proach can make the solution more robust to label outliers, it will typically not make the

solution significantly more robust to feature outliers. In fact, when modifying Ordinary Least

Squares regression to use the L1 loss function, one finds in some cases that changing the

feature of one point slightly can cause the solution to jump discontinuously (Ellis, 1998),

which seems like a step in the wrong direction from a robustness perspective. Second, by

changing the loss function to minimize, one is solving a fundamentally different problem from

the original one, so one can get a very different solution from what ordinarily least squares or

Ridge Regression would yield even in the absence of outliers.

For an instance of this, notice that argminc
∑

i |yi− c|2 and argminc
∑

i |yi− c| can have very

different solutions: the mean for the first and the median for the second. For non-symmetric
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distributions (including those without potential for large outliers) the mean and median can

be far apart. Ideally, the choice of error function should be chosen based on one’s goals and

the prediction problem one’s been handed, not on a desire for robustness. If the nature of

the problem is such that miss-predicting a point’s label by 2 units is 4 times worse than

miss-predicting by 1 unit, then that’s a property the algorithm should respect, making the

L2 error function more appropriate than the L1 error function. Similarly, if one’s goal is

to accurately predict the mean of the label associated with a point, rather than say the

median, the L2 error function will again be more appropriate than other choices. Changing

the loss function is often an inappropriate way to achieve outlier robustness because it does

not preserve the original prediction goal.

Another approach to replacing the least squares problem with a more outlier robust problem

is the Theil-Sen estimator (Blunck and Vahrenhold, 2006), which uses as the slope of the

prediction line (for one dimensional prediction tasks) the median of the slopes of all lines

passing through all pairs of data points. This method is certainly useful for some applications.

But as with the approach of changing the loss function, this approach alters the goal that

our algorithm is attempting to achieve, and therefore could lead to substantially different

predictions even when no extreme outliers are presents.

Yet another strategy is to minimize the median of the squared errors (or another robust mea-

sure of scale applied to the prediction errors), rather than the sum of squared errors, known as

S-estimation (Rousseeuw and Yohai, 1984). While this approach is robust to both label and

feature outliers, it can have low statistical efficiency in outlier free data (Onur and Cetin, 2011).

An ideal approach to handling outliers would work for feature outliers in addition to label

outliers, and would not require one to change one’s ultimate goal (such as predicting the
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mean of the label distribution at a point). It would also ideally produce predictions that are

identical to or very close to Ridge Regression in the case when no outliers are present.

3.2.2 Pre-processing to Remove Outliers.

There are many approaches to pre-processing a training set to handle outliers, for instance

by removing any point whose distance is more than D (using some notion of distance) from

at least a fraction F of the other data points (Knorr et al., 2000a). Other approaches include

reducing the dimensionality of the data set to just one or two dimensions where outlier

detection is easier, or performing clustering on the data (Ben-Gal, 2005).

Pre-processing the data to remove outliers has the advantage of being simple and applicable

to a wide range of problems, but it has disadvantages as well. How outlier-like a point is

falls on a continuum, so some threshold will be required to decide whether a point should be

removed. It is unclear how to set this threshold properly, and if it is not set properly, either

too much data will be removed, which may both bias the solution and increase its variance,

or too little will be removed, which will not handle the outlier problem.

A second issue with this approach is that it provides an all-or-nothing solution. Intuitively it

seems that points that are somewhat outlier-like should count somewhat less during training

than points that are not at all outlier-like, but this pre-processing approach to handling out-

liers either removes a data point completely or treats it equally to all other non-removed points.

A third potential issue for pre-processing based outlier removal is that it is not obvious that

outliers can reliably be detected without taking into account the machine learning model

that will be applied afterwards. In other words, without a model for the data, it is harder to
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say what is or isn’t an outlier, but pre-processing occurs precisely before one has a model

for the data. Removal of one data point can influence which other data points appear to be

outlier-like, which makes building the outlier removal process directly into the iterations of

the training process especially desirable, especially compared to performing outlier removal

in one pass of the data.

Unlike pre-processing approaches, it is desirable to have an algorithm that automatically

determines the degree of “outlier-ness” of points, that reduces the weight of outliers rather

than removing them altogether, and that is built into the machine learning algorithm itself

so that it can leverage the model of the data in determining what is an outlier.

3.2.3 Desirable Properties of an Outlier-Robust Algorithm

Based on the discussion above about the inadequacies of the two previously mentioned

approaches to removing outliers, we seek an approach to making Ridge Regression and

Ordinary Least Squares regression robust to outliers that:

1. Handles both feature outliers and label outliers.

2. Does not redefine our prediction goal (e.g. minimizing the squared error or predicting

the mean label for each data point), so the solutions produced by our approach should

closely approximate that of Ridge Regression (or least squares) in the case where our

data does not contain outliers.

3. Automatically determines how strongly to reduce the influence of points that are

outlier-like, so that an arbitrary cutoff does not need to be set by hand.

4. Reduces the weight of outliers rather than removing them entirely, so that points that

are only somewhat outlier-like can be handled in an appropriate way.
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5. Is built into the machine learning algorithm itself, and uses the learned model (while it

is being iteratively learned) in making its determination of what an outlier is.

3.3 Ridge Regression

We now consider Ridge Regression, and examine its behavior in the presence of outliers,

which as we will see is far from desirable.

Ridge regression (which encompasses Ordinary Least Squares as a special case when λ = 0)

makes predictions of labels from points by solving the following Ridge Regression optimization

problem’ for the solution coefficients wλ:

wλ ≡ argmin
w∈Rn

m∑
i=1

(wᵀX i − yi)2 + λ‖w‖2
2. (3.1)

Here λ > 0 is a complexity parameter that determines the tradeoff between minimizing the

empirical error (seeking low bias) and considering only small coefficients for wλ (seeking low

variance). The solution to the optimization problem is given by:

wλ = (XXᵀ + λI)−1Xy. (3.2)

3.3.1 Ridge Regression and Outliers

It is widely believed that Ridge Regression is “robust”, due to the flexibility it allows for

selecting the complexity parameter λ. Intuitively, it may seem that being able to make a

choice of λ can prevent the algorithm from performing badly when a data set has outliers.

One reason for this false belief may come from the fact that Ridge Regression is “uniformly

stable”. This means that one can bound the maximum change in prediction error that can
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occur due to adding (or removing) a single data point from the training set. If the predictions

cannot change much when one data point changes, it intuitively seems that the algorithm

must be robust against an extreme outlier in the data. Consider the following theorem

adapted from Bousquet and Elisseeff (2002), which is based on the uniform stability of Ridge

Regression.

Theorem 3. Let Z = (X, y) be our training set, and let
∼
Z be the same as Z except with any

one point (column) dropped from X and the corresponding label (row) dropped from y. Let

lZ be the linear function solving the Ridge Regression optimization problem (Equation 3.1)

trained on Z, and l∼
Z

be the corresponding solution when instead trained on
∼
Z. The prediction

error achieved by lZ at any point x ∈ Rn cannot differ from the prediction error achieved by

l∼
Z

at x by more than β, where

β ≤ 2
κ2M2

λm

with the assumption that the underlying distribution from which our points and labels are

generated only produces points x such that ‖x‖2 ≤ κ , and only produces labels y0 such that

y0 ∈ [0,M].

The above theorem tells us that when one point is added to (or removed from) our training

data, the predictions made by Ridge Regression on all other points cannot change “very

much”. There are at least three reasons why the stability based bound of Theorem 3 does not

imply that Ridge Regression has satisfactory resistance to outliers, even when the conditions

of the theorem are met.

1. The choice of λ typically depends on the data (for example, when we use k-fold cross-

validation to set this parameter). But in Theorem 3 it is assumed that λ is fixed. If the

procedure for selecting λ selects a small value, then β could be very large, so that the

algorithm could actually be very influenced by the addition of one point.
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2. β depends on the maximum possible label value, M. In a world where outliers are

possible we may have labels in our data set that are far larger than all the rest. If the

label bound M is large, then β, the amount our predictions can change, may be large

as well.

3. β depends on the maximum possible point norm, κ. But an outlier point may lie very

far from the origin. If the point norm bound κ is large, then β may be large as well.

3.3.2 k-Fold Cross-Validation with Outliers

There is an additional reason why Ridge Regression, as it is usually implemented, is not

robust to outliers. This is because k-fold cross-validation, despite its huge popularity, is itself

not robust to outliers. So the standard procedure for selecting λ in Ridge Regression adds

another source of non-robustness.

The process of performing k-fold cross-validation involves splitting the training data Z = (X, y)

into k disjoint subsets S1, . . . , Sk of approximately equal size. Then, for various choices of λ

(for instance from some exponentially growing set) we train once on each of the Z − Si for

i ∈ {1, . . . , k}, predict the labels in the corresponding Si, and compute the sum of squared

error for the predictions of all labels in Si. We thus get k error values for the current choice

of λ, one such error for each Si. We sum these k errors together to get a total error estimate

for the current choice of λ. We carry out this procedure for each λ in our set, and finally

select the λ that yields the lowest error.

Consider what happens when the k-fold cross-validation algorithm is applied to a ma-

chine learning algorithm where the training data contains one very extreme outlier (which we

assume is very hard to predict, and therefore will have an enormous prediction error when we
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attempt to predict it). This outlier will fall into exactly one of the S1, . . . , Sk. Without loss of

generality we can assume it is in S1. Even if we suppose that the algorithm is not affected by

outliers when it trains on Z − Si for i 6= 1 (even though it will be training on data containing

an outlier), a strange outcome will occur when training on Z − S1 and computing prediction

errors on S1. The outlier in S1 will be very poorly predicted, causing a very large prediction

error. If that outlier is sufficiently extreme, that error can overwhelm the prediction error

of all other points combined, both from within S1 and from the other Si. Since all of the

prediction errors are summed together, that means that the total error could be largely

determined by the error made on that one outlier point. Hence, the parameter that we are

applying k-fold cross-validation in order to learn may simply be determined by whichever

choice of that parameter causes the best prediction of the single terrible outlier. This is of

course an awful way to select the parameter because it depends mainly on one point in the

data. It is because of this lack of robustness that our algorithm applies a robust variation on

k-fold cross-validation, which we call Stabilized k-Fold Cross-Validation.

3.3.3 Label Outliers with Ridge Regression

As we now demonstrate, a single point with a sufficiently large label in the training set

can destroy the performance of Ridge Regression, even if λ is chosen optimally. Suppose

that point Xm is a label outlier in the sense that its corresponding label ym is very large

compared to all the other labels. Now, we will write the formula for the Ridge Regression

solution coefficients, which solves:

min
w

m∑
i=1

(X iᵀw − yi)2 + wᵀΛw.

Note that for now we generalize the regularization matrix λI to instead be an arbitrary

positive definite matrix Λ, to gain greater clarity on the impact of regularization. We have:
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wΛ = (XXᵀ + Λ)−1Xy

= (XXᵀ + Λ)−1

m∑
i=1

X iyi

= (XXᵀ + Λ)−1Xmym + (XXᵀ + Λ)−1

m−1∑
i=1

X iyi

If an entry of the column vector (XXᵀ+Λ)−1Xm is sufficiently small in magnitude relative

to ym, then ym will not be able to distort the corresponding coefficient of wΛ. However, as

ym gets arbitrarily large relative to the elements of (XXᵀ + Λ)−1Xm, the solution coefficients

can become arbitrarily distorted, The only hope we have to ensure this does not occur is to

make a judicious choice of Λ, which must depend on ym itself. However, since one almost

always uses Λ = λI, the only choice is over the scalar parameter λ ≥ 0 in

wΛ = (XXᵀ + λI)−1Xmym + (XXᵀ + λI)−1

m−1∑
i=1

X iyi.

The problem is that λ does not provide enough flexibility to simultaneously eliminate

the effect of the outlier label ym while still preserving the effects of the rest of the points. If

we get lucky and it turns out that ‖(XXᵀ)−1Xm‖ is very small then nearly any choice of

lambda may be fine. But in most cases the only way to make ‖(XXᵀ + λI)−1Xmym‖ small

is to choose λ very large, which will have the effect of making ‖wΛ‖ small, preventing the

algorithm from learning much of anything from the non-outlier points. We have that

lim
ym→∞

wΛ

ym
= (XXᵀ + Λ)−1Xm

meaning that as ym gets large, the only label that ends up having a substantial effect on the

solution is ym, and that the solution coefficients are approximately proportional to ym for
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large ym.

3.3.4 Feature Outliers with Ridge Regression

Intuitively, one might think that allowing the features of one point to grow unboundedly

might produce a similar effect as letting that point’s label do so. But the story for feature

outliers is very different than that of label outliers. Suppose that the label ym for our outlier

point is modest in size, but that the entries of the point vector Xm are very large (we choose

Xm without loss of generality, as the effect is symmetric for all points). For simplicity, we

write Xm = c z for a fixed column vector z and scalar c and consider what happens to the

solution coefficients wΛ = (XXᵀ + Λ)−1Xy as c→∞. Substituting c z for Xm in XXᵀ, we

can write:

XXᵀ =
∼
X
∼
X

ᵀ

+ c2 zzᵀ and (XXᵀ + Λ)−1 = (
∼
X
∼
X

ᵀ

+ Λ + c2 zzᵀ)−1

where
∼
X is the matrix X with the m’th column removed. Since c zzᵀ is a rank one matrix

added to
∼
X
∼
X

ᵀ

+ Λ, we can apply the Sherman-Morrison formula to compute the inverse, so

long as 1 + c2 zᵀ(
∼
X
∼
X

ᵀ

+ Λ)−1z 6= 0. Defining

∼
R ≡ (

∼
X
∼
X

ᵀ

+ Λ)−1

this gives us:

(XXᵀ + Λ)−1 = (
∼
X
∼
X

ᵀ

+ Λ + c2 zzᵀ)−1 =
∼
R− c2

∼
Rzzᵀ

∼
R

1 + c2 zᵀ
∼
Rz

.
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We return now to the equation for the Ridge Regression solution coefficients, and take the

limit as c→∞. So long as zᵀ
∼
Rz 6= 0, this yields

w∞ ≡ lim
c→∞

wΛ = lim
c→∞

(XXᵀ + Λ)−1Xy

= lim
c→∞

(XXᵀ + Λ)−1Xmym + lim
c→∞

(XXᵀ + Λ)−1

m−1∑
i=1

X iyi

= lim
c→∞

(
∼
R− c2

∼
Rzzᵀ

∼
R

1 + c2 zᵀ
∼
Rz

)c zym + lim
c→∞

(
∼
R− c2

∼
Rzzᵀ

∼
R

1 + c2 zᵀ
∼
Rz

)
m−1∑
i=1

X iyi

= lim
c→∞

(
∼
Rz − c2

∼
Rzzᵀ

∼
Rz

1 + c2 zᵀ
∼
Rz

)c ym + (
∼
R−

∼
Rzzᵀ

∼
R

zᵀ
∼
Rz

)
m−1∑
i=1

X iyi

=
∼
Rz lim

c→∞
(1− c2 zᵀ

∼
Rz

1 + c2 zᵀ
∼
Rz

)c ym + (
∼
R−

∼
Rzzᵀ

∼
R

zᵀ
∼
Rz

)
m−1∑
i=1

X iyi

=
∼
Rz lim

c→∞
(

1

1 + c2 zᵀ
∼
Rz

)c ym + (
∼
R−

∼
Rzzᵀ

∼
R

zᵀ
∼
Rz

)
m−1∑
i=1

X iyi

= (
∼
R−

∼
Rzzᵀ

∼
R

zᵀ
∼
Rz

)
m−1∑
i=1

X iyi

= (
∼
R−

∼
Rzzᵀ

∼
R

zᵀ
∼
Rz

)
∼
X
∼
y

=
∼
w −

∼
Rzzᵀ

∼
w

zᵀ
∼
Rz

.

Now, in the special case where there is only one feature, the matrix
∼
R and the column

vector z (assumed not to be 0) both become scalars, so (
∼
R −

∼
R zzᵀ

∼
R

zᵀ
∼
Rz

) = (
∼
R −

∼
R

2

z2
∼
Rz2

) = 0.

Hence, our final expression for wΛ in the one dimensional case is simply wΛ = 0. Therefore,

in this case the effect of a point with very large features is extremely bad, forcing the solution

coefficient to go to zero.

In the case when the number of features is greater than 1, we see a different story. Our

79



solution coefficients are not forced to vanish, but they are influenced by the outlier point,

changing from
∼
w, had that point not been included, to (I −

∼
Rzzᵀ

zᵀ
∼
Rz

)
∼
w instead. To see what sort

of effect this is, consider the prediction that the solution coefficients w∞ yield for the outlier

itself. One has:

Xmᵀw∞ = c zᵀw∞ = czᵀ(
∼
w −

∼
Rzzᵀ

∼
w

zᵀ
∼
Rz

)

= c(zᵀ
∼
w − zᵀ

∼
Rzzᵀ

∼
w

zᵀ
∼
Rz

)

= 0.

Hence, as c→∞ the solution coefficients yield a 0 prediction for the outlier Xm = c z, but

otherwise the solution coefficients still depend mainly on the features and labels of all the

other points. As c gets increasingly large, Ridge Regression is forced to make an ever smaller

prediction for the point Xm. Intuitively, the reason this happens is because Ridge Regression

is trying to predict ym as accurately as possible, and as Xm gets larger, the only way this

can occur is if it makes smaller and smaller predictions for the unit vector in the direction of

Xm. In one dimension this has devastating effects on our solution coefficients, but in higher

dimensions this can be achieved while still maintaining somewhat reasonable predictions on

other directions. But the predictions are still distorted, sometimes substantially so, which is

not ideal.

We will now examine just how bad an arbitrarily large feature outlier is in terms of its

distorting effect on our predictions. Let Errc[xi, yi] be the prediction error that Ridge Re-

gression makes on the point (xi, yi) when trained on the feature matrix X and column vector

of labels y, with Xm = c z, and let Err∞[xi, yi] ≡ limc→∞Err
c[xi, yi], be the error made in

the limit as c → ∞. Furthermore, let
∼
Err[xi, yi] be the prediction that Ridge Regression
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makes on the point (xi, yi) when trained on the feature matrix
∼
X (which is just X with the

mth column, Xm removed) and the label column vector
∼
y (y with the mth row value ym

removed). We can then consider the difference in generalization and empirical error between

keeping the point Xm in our training set, and omitting it before training. We define the

difference in generalization error as

∆̄ = E
xi,yi

Err∞[xi, yi]− E
xi,yi

∼
Err[xi, yi]

and for the difference in empirical error (on all points except for Xm) we write

∆̂ =
1

m− 1

m−1∑
i=1

Err∞[xi, yi]−
1

m− 1

m−1∑
i=1

∼
Err[xi, yi]

with xi ≡ X i.

These quantities ∆̄ and ∆̂ measure how badly Ridge Regression’s prediction accuracy is

affected by a single training point which has arbitrarily large feature values. The next theorem

provides formulas for their values.

Theorem 4. Let
∼
w be the solution coefficients for Ridge Regression when trained on

∼
X,

∼
y,

and let
∼
R ≡ (

∼
X
∼
X

ᵀ

+ Λ)−1. Furthermore, let
∼
m ≡ m − 1, the sample size once the point

Xm is removed. Let C̄ ≡ ∼
m Exi,yi [xixi]ᵀ and Ĉ ≡

∑m−1
i=1 X iX iᵀ =

∼
X
∼
X

ᵀ

, which for mean

centered data are unnormalized versions of the true and empirical covariance matrices, and

let r̄ =
∼
m Exi,yi [xiyi]. Then:

∆̄ =
1
∼
m

(
zᵀ
∼
w√

zᵀ
∼
Rz

)2
zᵀ
∼
RC̄

∼
Rz

zᵀ
∼
Rz

+
2
∼
m

(
zᵀ
∼
w√

zᵀ
∼
Rz

)
zᵀ
∼
R(r̄ − C̄∼w)√

zᵀ
∼
Rz
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and

∆̂ =
1
∼
m

(
zᵀ
∼
w√

zᵀ
∼
Rz

)2
zᵀ
∼
RĈ

∼
Rz

zᵀ
∼
Rz

+
2
∼
m

(
zᵀ
∼
w√

zᵀ
∼
Rz

)
zᵀ(I−

∼
RĈ)

∼
w√

zᵀ
∼
Rz

.

Note that if Λ→ 0 and Ĉ is invertible, then
∼
R→ Ĉ−1, yielding:

lim
Λ→0

∆̂ =
1
∼
m

(zᵀ
∼
w)2

zᵀĈ−1z
.

Proof. The proof is nearly identical for ∆̄ and ∆̂. In the former case, which corresponds to

generalization error, we define

E[.] ≡ E
xi,yi

[.]

which is the expected value over some new independently sampled point (xi, yi), whereas for

the case of ∆̂, which corresponds to empirical error, we define

E[.] ≡ 1
∼
m

m−1∑
i=1

.

which is the empirical mean over all training points. We furthermore define:

C ≡ ∼
mE[xix

ᵀ
i ] r ≡ ∼

mE[xiy
ᵀ
i ]

∼
R ≡ (

∼
X
∼
X

ᵀ

+ Λ)−1 Z ≡
∼
Rzzᵀ

∼
R

zᵀ
∼
Rz

.

Then we have, for ∆ ≡ ∆̄ in the generalization error case, and ∆ ≡ ∆̂ in the empirical error
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case,

∆ ≡ E[ lim
c→∞

Errc[xi, yi]]− E[
∼
Err[xi, yi]]

= E[Err∞[xi, yi]]− E[
∼
Err[xi, yi]]

= E[(xᵀiw∞ − yi)2 − (xᵀi
∼
w − yi)2]

= E[(xᵀi (
∼
w − Z

∼
X
∼
y)− yi)2 − (xᵀi

∼
w − yi)2]

= E[((xᵀi
∼
w − yi)− xᵀiZ

∼
X
∼
y)2 − (xᵀi

∼
w − yi)2]

= E[(xᵀiZ
∼
X
∼
y)2 − 2xᵀiZ

∼
X
∼
y(xᵀi

∼
w − yi)]

=
∼
y
ᵀ ∼
X

ᵀ

Zᵀ E[xix
ᵀ
i ]Z

∼
X
∼
y − 2

∼
y
ᵀ ∼
X

ᵀ

Zᵀ E[xix
ᵀ
i ]
∼
w + 2

∼
y
ᵀ ∼
X

ᵀ

Zᵀ E[xiyi]

=
1
∼
m

(
∼
y
ᵀ ∼
X

ᵀ

ZᵀCZ
∼
X
∼
y − 2

∼
y
ᵀ ∼
X

ᵀ

ZᵀC
∼
w + 2

∼
y
ᵀ ∼
X

ᵀ

Zᵀr

)
=

1
∼
m

(
∼
w

ᵀ zzᵀ
∼
R

zᵀ
∼
Rz

C

∼
Rzzᵀ

zᵀ
∼
Rz

∼
w − 2

∼
w

ᵀ zzᵀ
∼
R

zᵀ
∼
Rz

C
∼
w + 2

∼
w

ᵀ zzᵀ
∼
R

zᵀ
∼
Rz

r

)

=
1
∼
m

(zᵀ
∼
w)2

zᵀ
∼
Rz

zᵀ
∼
RC

∼
Rz

zᵀ
∼
Rz

+
2
∼
m

zᵀ
∼
w

zᵀ
∼
Rz

zᵀ
∼
R(r − C∼w)

=
1
∼
m

(
zᵀ
∼
w√

zᵀ
∼
Rz

)2
zᵀ
∼
RC

∼
Rz

zᵀ
∼
Rz

+
2
∼
m

(
zᵀ
∼
w√

zᵀ
∼
Rz

)
zᵀ
∼
R(r − C∼w)√

zᵀ
∼
Rz

.

In the case of empirical error, we use the additional fact that
∼
Rr =

∼
R
∼
X
∼
y =

∼
R
∼
w to simplify

further. Observing that C = C̄ and r = r̄ in the case of generalization error, and that C = Ĉ

in the case of empirical error, completes the proof.

We now introduce iteratively reweighted Ridge Regression, which provides the algorithmic

framework for our new algorithm, Stabilized Ridge Regression. This algorithm will behave

similarly to Ridge Regression when no outliers are present, but unlike Ridge Regression it is

inherently robust to outliers.
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3.4 Iteratively Reweighed Ridge Regression

Let m be the number of data points in our training set, and let X be the n×m matrix

of points, with one point X i per column, and one feature Xi per row. Likewise, let the m× 1

column vector y represent the labels of our training set, with one label yi for each point X i.

We assume here, and throughout this chapter that X has had a row of all 1’s added, to

handle the intercept (i.e. constant term) of linear regression. With this assumption in place,

we can simply treat the constant term as one more feature like any other throughout this work.

Consider Algorithm 1, the iteratively reweighted Ridge Regression algorithm. This al-

gorithm is very versatile. For instance for 1 < p ≤ 2, if we choose to assign weights

to points using the reweighting function vi → 1
|Xiᵀw−yi|2−p , this algorithm converges to

w = argmin∼
w

∑m
i=1(X

i∼w − yi)p. Hence this choice of reweighting function replaces the L2

loss function with the Lp loss function. Examining this family of reweighting functions

one sees immediately why they do not appropriately handle feature outliers: they do not

account for the extremeness of the feature vector X i except through its influence in predicting

the label. As we shall see, the extremeness of the feature vector should be handled more

explicitly. Furthermore, from examining this family of reweighting function one can also see

why they can produce quite different solutions than Ordinary Least Squares even when there

are no outliers: as p gets close to 1, where strong outlier robustness occurs, such functions

significantly reduce the weight of points that are not very outlier-like. In other words, it is

not merely the outliers that are substantially affected by these re-weighting schemes, making

them questionable as methods of outlier reduction.

Note that in the case where the reweighting function always assigns the constant 1 for

all vi, the Iteratively Reweighted Ridge Regression algorithm above simply gives the Ridge

Regression solution w = (XXᵀ + λI)
−1Xy. In other words, this algorithm generalizes Ridge
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Algorithm 1 Iteratively Reweighted Ridge Regression

1: Initialize the non-negative weight vector v to be a vector of all 1’s (indicating that initially

all points count equally).

2: Set the solution coefficients w by solving the weighted Ridge Regression problem for

the solution coefficients w → argminw′
∑m

i=1 vi(X
iᵀw′ − yi)

2 + λ‖w′‖2
2, with solution

w = (XVXᵀ + λI)
−1XV y. Here, λ is the complexity parameter of Ridge Regression

determining how strongly to push the solution towards the zero vector ~0, I is the identity

matrix, and V is a diagonal matrix with the non-negative weights vi as its diagonal

elements.

3: Adjust the weights vi → Ωi(w,X, y) using some “reweighting” function Ω which may

depend on the solution w, the training points X and the training labels y.

4: Normalize the weights vi so that they sum to the number of points, m, by taking

vi → vi
1
m

∑m
j=1 vj

.

5: If the solution coefficients w have not changed in 2-norm by more than ε compared to

the solution coefficients from the previous iteration, stop, and use these last solution

coefficients to predict future data. Otherwise, return to Step 2.
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Regression.

3.5 Stabilized Ridge Regression

We propose a new algorithm that we call Stabilized Ridge Regression. It is implemented

using iteratively reweighed Ridge Regression (Algorithm 1) but with a unique reweighting

function that contains a free parameter α, measuring the degree that outliers need to be

handled. Let R ≡ (XVXᵀ + λI)
−1. Our algorithm uses the following specially chosen

reweighting function:

vi → vα(zi)

where

vα(zi) =
1

1 + (αzi)6

and

zi =
X iᵀRX i

1− viX iᵀRX i
|X iᵀw − yi|

To set α we introduce a robust variation on k-fold cross-validation, which we call Stabilized

k-Fold Cross-Validation. As seen below in Algorithm 2, the cross-validation process proceeds

much like ordinary k-fold cross-validation, but computes error in a slightly different and

much more robust fashion. As usual, we use some wide ranging set of α values, for instance,

α ∈ A ≡ {10−6, 2 ∗ 10−6, 4 ∗ 10−6, . . . , 240 ∗ 10−6}. For the parameter 0 < ρ < 100 in the

algorithm, we generally use ρ = 5, representing clipping at the 5th and 95th percentile

for error values. This choice performs well so long as less than 5% of the data consists of

substantial outliers. In situations where outliers could realistically be even more common

than 5%, the value of ρ should be increased. For reasons that will be discussed later, we add

a further rule to the Stabilized Ridge Regression Algorithm, that whenever more than half

the points are assigned a weight less than 1
2

(before the weights have been normalized to sum
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to the number of points) then we skip that α and do not consider it during cross-validation.

This allows us to skip large values of α, since once this condition is triggered for a given α,

we need not consider larger ones. When training on many choices for α, one can further

speed up the algorithm by starting with the lowest α and using the final weights from the

previous α as the starting point for the subsequent larger α.

When we require λ > 0 to avoid overfitting or to make it possible to invert the feature

similarity matrix, we can do so by applying k-fold stabilized cross-validation to that param-

eter as well, trying combinations of λ and α to find one that performs well. When λ = 0

we call the algorithm Stabilized Least Squares because it corresponds to an outlier robust

modification of the Ordinary Least Squares algorithm.

Finally, we note that it is usually a good idea to normalize the features of the training

data. We recommend this is done by computing the median and median absolute deviation

(i.e. the median of the absolute value of the differences of each value from the median)

of each feature in the training data. Then, subtract the corresponding median from each

feature in both the training and testing data, and then divide each result by the corre-

sponding median absolute deviation. This is not strictly necessary, but it serves to center

the data, and make the importance of each feature be of comparable importance from the

perspective of the regularization term. The normalization that is typically done (subtracting

the feature means, and dividing by the feature standard deviations) is a bad idea in this

context. Outliers can cause the standard deviation and even the mean to be very unrea-

sonable values, which can dramatically distort the results. Hence, we base normalization

on the median and median absolute deviation rather than on the mean and standard deviation.

A concise python programming language implementation of the core of the Stabilized Re-
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gression algorithm is provided in section 3.9. Stabilized k-Fold Cross-Validation would be

applied to the provided function to learn the parameter α (for Stabilized Least Squares) or

to learn both the parameters α and λ (for Stabilized Ridge Regression).

3.5.0.1 More Flexible Reweighting Functions

For more flexibility in the assignment of the weights, another option would be to introduce

a second reweighting function parameter, such as p > 1 in:

vα(zi) =
1

1 + (αzi)p

This would require cross-validation over both p and α (when λ = 0 is an acceptable choice)

or over p, α and λ (when λ > 0 is required). In practice though, we find this extra flexibility

in the weight function is generally not needed.

3.5.0.2 Using the Weights of Stabilized Ridge Regression

We note that when the Stabilized Ridge Regression algorithm has been run, it provides

not only a method for making label predictions, but it also provides the weights, vi, to

assign to each point in the training data. These weights can then be used to estimate, for

example, the covariance matrix of the features matrix or the mean of the features in a robust

fashion (e.g. by replacing averages with weighted averages). Thus, the algorithm tells us how

to weight our training data for any statistical calculation where robustness is needed. Let

us therefore switch our perspective momentarily, and rather than viewing Stabilized Ridge

Regression as a machine learning algorithm, view it as a way to produce robust statistics (i.e.

using it to calculate weights for each training point, and then to compute a robust version of

the statistics of interest by applying those weights). In this case, we can think of the labels,

y, as providing the measure of external validity that is used to estimate the free parameter α
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and set our weights for each training point. In other words, the Stabilized Ridge Regression

algorithm will tell us how to weight our training data for statistical calculations to make

those calculations robust to outliers, but it has a free parameter α that needs to be set, which

measures how harshly we reduce the weight of outliers. How do we set this free parameter?

We do so by considering which choice of α will allow us to best (robustly) predict the variable

y from the features. So if we think that our features should allow us to predict y, we can

robustly estimate the covariance of our features or other statistics of our features by running

Stabilized Ridge Regression and then using the α that best allows us to use our features to

predict y. What’s more, y is used in the weight calculations themselves. Training points that

do not yield accurate predictions of their own label are given less weight.

Consider the following example where such a procedure is useful. Suppose a psychologist

needs to estimate the covariance matrix of a set of variables that reflect past behaviors related

to impulsivity (e.g. number of car accidents, number of fights, number of jobs quit) that was

gathered on 300 people (e.g. so that a factor analysis of the variables can be performed). But

the data seems to have many outliers, due to a combination of human entry error and wide

behavioral variation. A regular covariance matrix calculation will produce a very inaccurate

covariance matrix due to these outliers, leading to a distorted factor analysis. But suppose

that the psychologist has a measure of external validity, which in this case might be scores

for each participant on an impulsivity personality test. By choosing these test scores for the

labels, y, the psychologist can then run Stabilized Ridge Regression on the data to produce a

weight for each data point, which can then be used to robustly estimate the covariance matrix.

Switching perspectives once more, yet another way to think about Stabilized Ridge Re-

gression is as a means to solve for α. In this case, we can think of α as a way of measuring

how outlier like our feature matrix X is, with respect to prediction variable y. In other words,
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α can be thought of a way of capturing the outlier-ness of a data set (X, y) as a single number.

If α is large, then standard statistical methods like Ordinary Least Squares regression, Ridge

Regression, covariance matrix estimates, and standard deviations calculations will tend to be

very inaccurate estimators. If on the other hand α is small, then we are in the realm where

our usual statistical methods work well.

Algorithm 2 Stabilized Cross-Validation

1: Divide our training data Z = (X, y) into k mutually exclusive subsets, F1, . . . , Fk each

with nearly the same number of points.

2: Create k new overlapping training sets Z1, . . . , Zk defined as Zi = Z − Fi.

3: For each αj ∈ A, and for each Zi ∈ {Z1, . . . , Zk}, train our Stabilized Ridge Regression

algorithm on Zi with α = αj, and compute the squared prediction error on every point

in Fi.

4: For each αj ∈ A, estimate the mean of all the squared out-of-sample prediction errors

using a robust mean estimator. In principle any robust estimate of the mean would do,

but the standard estimator (sum the values, divide by their number) will not work. The

robust mean estimator we have used in the examples below takes all such squared errors

associated with αj and computes the ρth percentile and 100 - ρth percentile. Any value

below the ρth percentile gets set to the ρth percentile value, and any value above the 100

- ρth percentile gets set to the 100 - ρth percentile value. Then, once this clipping has

been performed, one takes the mean computed in the usual way.

5: Choose the αj with the lowest average truncated squared prediction error.

6: Train a new Stabilized Ridge Regression algorithm with the winning αj on the full training

set Z, and use its solution to make predictions on future data.
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3.6 Stability of Solutions

To explain where the reweighting function used in the Stabilized Ridge Regression al-

gorithm comes from, we will consider how much our solution coefficients w change when

we drop one point from our data set. Considering the impact of dropping a point from

the training set is of course equivalent to considering the impact of adding a point to the

training set, but for convenience we will refer to such cases as a point “being dropped”.

Our reweighting function is selected so as to bound the impact that an extreme label or

feature outlier can have on our predictions, as measured by considering how predictions

change when that point is dropped. As discussed, this does not make the algorithm uniformly

stable (a commonly used notion of stability, see Bousquet and Elisseeff (2002)). But uniform

stability is actually not the right notion of robustness when outliers are being considered.

Rather, our approach makes the change in predictions of Stabilized Ridge Regression not

too large when dropping an extreme point, assuming the point we are predicting is not too

extreme. Any linear prediction method will predict an arbitrarily large value when applied

to a point whose feature vector has sufficiently large norm. This is simply part of what it

means to have a linear model. So strictly speaking, for linear methods, uniform stability

is not possible without assumptions about the magnitude of the feature vectors that the

algorithm will be applied to (an assumption we cannot make since we are precisely considering

the case of outliers). Hence, our interest is not in uniform stability per se, but in limiting

how much outliers change our solution coefficients, which can be investigating by assessing

how much our solution coefficients can change when a point is dropped from our training data.

Recall that the reweighting function used in Stabilized Ridge Regression is parameter-

ized by a non-negative number α, which is used to set the tradeoff between not eliminating

the effect of true outliers, and removing the effect of non-outliers. At the extreme of α = 0
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we simply reproduce Ridge Regression, with the usual lack of robustness to outliers, and at

the opposite extreme as α→∞ outliers are penalized to an extreme degree, which will be

discarding too much information. Since there is not a clear cut distinction between outliers

and non-outliers, this tradeoff will always exist, but our algorithm addresses this problem

by learning the best choice of α for the given problem using our robust version of k-fold

cross-validation.

3.6.1 Stability of Weighted Ridge Regression

If an outlier is to destroy the prediction accuracy of an algorithm, it must do so by

changing the solution coefficients w, since those coefficients fully determine the predictions

made. The ultimate measure of how much the solution coefficients are effected by the removal

of a single point is by examining the difference in solution coefficients including and removing

the point. In other words, robustness against the insertion of an outlier hinges on the

magnitude of the quantity:

∼
w − w

where w is the vector of solution coefficients, and
∼
w is the same solution coefficients but

as they would have been had we not been given one of the training points. Without loss

of generality, we assume that the point being dropped is zm = (Xm, ym), the last point in

the data set. We will demonstrate that through a careful selection of the weight vi that we

assign to each point, one can prevent
∼
w − w from becoming huge in magnitude, even in the

case where the point being dropped is arbitrarily extreme, with arbitrarily large label or

arbitrarily large feature vector norm.

To study the change in solution coefficients w when the last point in the training set

is dropped, we will use
∼
X,

∼
y and

∼
V to mean the points X, labels y, and diagonal weight
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matrix V, respectively, after the mth point is removed from each (i.e. exactly as they would

have been had there never been a point (Xm, ym)). We note that since we are performing

iterative reweighting in our Stabilized Ridge Regression algorithm, the weights themselves

depend on the data, and therefore in general the entries of
∼
V are different than the entries of

V . Additionally, the former is an m− 1×m− 1 positive diagonal matrix whereas the latter

is an m×m positive diagonal matrix.

We define R ≡ (XVXᵀ + λI)−1 and
∼
R ≡ (

∼
X
∼
V
∼
X

ᵀ

+ λI)−1, where we assume λ > 0 to

make sure the matrix is invertible and positive-definite. Finally, we let V̄ be identical to the

diagonal weight matrix V , except with the mth row and mth column of V removed (so that

V̄ and
∼
V are both m− 1×m− 1 and so can be subtracted from each other), and we define:

V ∆ ≡
∼
V − V̄ .

The formula that we wish to derive for
∼
w − w will be designed to take a special form, such

that it separates into two terms: (1) the direct effect that label ym, feature vector Xm and

corresponding weight vm have on the change in solution coefficients when we drop the mth

point, and (2) a term independent of the point being dropped except due to the indirect

effect of the weights on all other points changing when we drop this point. Applying the

relation w = RXV y, we get:

∼
w − w =

∼
R
∼
X
∼
V
∼
y −RXV y

= (
∼
R
∼
XV̄

∼
y −RXV y) + (

∼
R
∼
X
∼
V
∼
y −

∼
R
∼
XV̄

∼
y)

= (
∼
R
∼
XV̄

∼
y −RXV y) +

∼
R
∼
XV ∆∼y.
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Now
∼
XV̄

∼
y =

m−1∑
i=1

viX
iyi = XV y − vmXmym.

Furthermore

∼
R = (

∼
X
∼
V
∼
X

ᵀ

+ λI)−1 =
(m−1∑

i=1

viX
iXjᵀ + λI

)−1

= (XVXᵀ + λI − vmXmXmᵀ)−1

= (R−1 − vmXmXmᵀ)−1 = R + vm
RXmXmᵀR

1− vmXmᵀRXm

by the Sherman-Morrison formula, as long as vmX
mᵀRXm 6= 1, a condition automatically

satisfied, since vmX
mᵀRXm = vmX

mᵀ
(
P + vmX

mXmᵀ
)−1

Xm for a positive definite matrix

P , which means Corollary 1 implies vmX
mᵀRXm < 1.

Putting the above expression for
∼
R together with the expression for

∼
XV̄

∼
y, we form an

expression for
∼
R
∼
XV̄

∼
y, and so can write:

∼
R
∼
XV̄

∼
y −RXV y =

(
R + vm

RXmXmᵀR

1− vmXmᵀRXm

)
(XV y − vmXmym)−RXV y

= RXV y − vmRXmym + vm
RXmXmᵀR

1− vmXmᵀRXm
(XV y − vmXmym)−RXV y

= vmRX
m
(XmᵀR(XV y − vmXmym)

1− vmXmᵀRXm
− ym

)
= vmRX

m
(XmᵀR(XV y − vmXmym)− ym(1− vmXmᵀRXm)

1− vmXmᵀRXm

)
= vmRX

m
(XmᵀRXV y − ym

1− vmXmᵀRXm

)
=

vmRX
m

1− vmXmᵀRXm

(
Xmᵀw − ym

)
.
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So far we have shown that our solution coefficients w change by the following amount due to

dropping point zm = (Xm, ym):

∼
w − w = vmAm +Bm.

where

Am =
RXm

1− vmXmᵀRXm

(
Xmᵀw − ym

)
and Bm =

∼
R
∼
XV ∆∼y.

We next examine the terms of the above equation to see when it will produce a large change

in solution coefficients due to the dropped point being an outlier.

3.6.2 Examining Bm

The term Bm does not contain the dropped point (Xm, ym), and it does not depend on the

dropped weight, vm, except for indirectly within V ∆ =
∼
V − V̄ , since this expression accounts

for the other weights vi changing as a consequence of the mth point disappearing. In other

words, Bm is independent of the point being dropped except through this points influence

on the change in weights. We can think of Bm as capturing the stability of the reweighting

function that assigns a weight to each point. As we see in Lemma 1, Bm is bounded, no

matter how extreme an outlier the dropped point is.

Lemma 1 (Bounding Bm). The maximum value of ‖Bm‖2 is bounded by the following

expression, which does not depend on the label ym or the feature vector Xm of the point being

dropped:

sup
zm=(Xm,ym)

‖Bm‖2 <
√

2m‖
∼
R
∼
X‖2‖

∼
y‖2.

95



Proof. Observe that:

sup
zm

‖Bm‖2 = sup
zm

‖
∼
R
∼
X(
∼
V − V̄ )

∼
y‖2

≤ ‖
∼
R
∼
X‖2 max

∼
V ,V̄

‖
∼
V − V̄ ‖2‖

∼
y‖2

=
√

(m− 1)2 +m2‖
∼
R
∼
X‖2‖

∼
y‖2

<
√

2m‖
∼
R
∼
X‖2‖

∼
y‖2

where we made use of the fact that
∼
V and V̄ are both positive diagonal matrices, with the

former summing to m− 1 and the latter summing to at most m.

In practice though, a good choice for our reweighting function will keep Bm much smaller

than this bound suggests. At one extreme, one can consider reweighting functions that

weight all points uniformly regardless of the training data, assigning the constant weights

vi = 1 and
∼
vi = 1. The weights vi and

∼
vi each must sum to the number of points, m and

m− 1 respectively, so the diagonal elements of V are all 1, and therefore so are the diagonal

elements of V̄ . Similarly, the diagonal elements of
∼
V are also all one. Hence, for this constant

reweighting function, Bm = 0, since V ∆ = 0.

At the other extreme, one can consider what happens when the reweighting function assigns

all of the weight to one point (which is not the outlier being dropped), and no weight to any

other points. In this example, when the most extreme outlier is dropped, we assume the

weight switches completely to another point, causing ‖V ∆‖2 to achieve its maximum value

of
√

(m− 1)2 +m2. This upper bound reflects a strange and poor choice of reweighting

function, because the weight is all focussed on one point, and which point it is focussed on is

highly influenced by another point (i.e. the one being dropped).
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In a truly ideal case, with an ideal reweighting function, an extreme outlier would be

assigned (essentially) zero weight, and assuming the other points are not outlier-like at all,

they would be equally weighted with all the remaining weight. In this ideal case we have

V ∆ =
∼
V − V̄ = diag(1− m

m−1
) = −1

m−1
I. Therefore, we would have

Bm =
−1

m− 1

∼
R
∼
X
∼
y =

∼
R

(
−1

m− 1

m−1∑
i=1

X iyi

)
.

Except in extreme cases where the label or feature distributions have infinite means,

1
m−1

∑m−1
i=1 X iyi will approach a constant as m gets large. Note that the quantity that

Bm converges to in this case does not depend on Xm or ym at all, which means that Bm is

impervious to the outlier being dropped.

Let us generalize this ideal case to one where there are k extreme outliers instead of just

one, and analyze how the solution coefficients change when any one of these k outliers is

dropped. We again assume an ideal situation where each outlier gets assigned 0 weight,

with the remaining weights uniformly distributed between the other points, all of which are

not outlier-like at all. This implies then that V ∆ = diag(m−1
m−k −

m
m−k ) = −1

m−kI. If g is the

fraction of good points, that is, the fraction that are not outliers, then k = (1− g)m, and

so in this case V ∆ = 1
g
−1
m
I. Therefore, the magnitude of Bm still converges to a constant as

m gets large, but the value of that constant is larger when the fraction of non-outliers is smaller.

The ideal cases above hint at what to look for in our choice of reweighting function: it

should be such that extreme outliers are assigned very small weights, and points that are not

outlier-like are all given approximately all the same weight near 1.
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3.6.3 Examining Am

The term Am is a major problem from the point of view of stability when dropping an

outlier. Unlike Bm it can get arbitrarily large when an arbitrarily bad point is dropped

(specifically, when |ym| gets arbitrarily large). Intuitively speaking, Am captures the direct

influence of the point zm = (Xm, ym) on our solution, rather than how our weights vi change

when the point is dropped, which is captured by Bm.

An important aspect of Am is that it appears with vm multiplying it, which is the weight

assigned to the point being dropped. Since our goal is to limit how much influence an outlier

can have on the solution coefficients when the outlier is dropped, we need to set this weight

vm so as to limit the effect of Am.

3.6.3.1 The Outlier Measure and Reweighting Function

With this goal in mind, we now examine a special choice for the weight vm. First, we

define a measure of how outlier-like the mth point is, given by:

dm ≡ |
XmᵀAm√
XmᵀRXm

| =
√
XmᵀRXm

1− vmXmᵀRXm
|Xmᵀw − ym|.

For our weights, we use

vm ≡ gα(dm)

where gα(d) is chosen to be a non-increasing, continuous function defined on d ≥ 0, with

range [0, 1] and satisfying gα(0) = 1. Here, α is a parameter determining how strongly

to lower the weight of outliers, which we will discuss in detail later. This function gα(d)

must be non-increasing as a function of d because we cannot assign more weight to points

that are more outlier-like than points that are less outlier-like. It must be non-negative
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because it represents the weight given to each point, which cannot be negative. We give

it an upper bound, which is also its value for dm = 0, because we want it to treat non

outlier-like points equally, not to give them arbitrarily large weight which could cause other

useful data points to be ignored. The choice of 1 for the upper bound is arbitrary, since our

weights will ultimately be normalized to sum to the number of points. For now we work with

unnormalized weights vm, but we will discuss the impact of normalizing them later on. We

choose gα(d) to be a continuous function of d; as a consequence, we will be able to apply a

fixed-point theorem to show the existence of a solution for the weights. We also require that

gα(d) assigns approximately uniform weights near 1 to all points with d ≈ 0. We enforce

this by requiring that when α > 0 the right hand derivative satisfies limd→0+
gα(d)−gα(0)

d
= 0,

which makes g locally a uniform distribution near 0. The reason we want this restriction is

due to the fact that d ≈ 0 corresponds to points that are not at all outlier-like. In order for

our Stabilized Ridge Regression algorithm to produce predictions that are very similar to

Ridge Regression in cases without outliers, we need all points with d ≈ 0 to be assigned the

same (maximal) weight. It is not desirable to reduce the weight of non-outliers, and doing so

will cause poorer predictions. Finally, we also require that gα has the property:

sup
d≥0

gα(d)d ≤ C

α

for some bounding constant C. Note that all of these properties we need for gα(d) make it

conform precisely to the definition of a Parameterized Weight Function (Greenberg et al.,

2016a). There are infinitely many such Parameterized Weight Functions to choose from, but

we use this particular one, vα(zi) = 1
1+(αzi)6

, as it is convenient due to (a) its wide region

of uniformity near zi = 0 (so that most points can be nearly equal weighted), and (b) its

relatively simple form. In figure 3.1 we show what this function looks like for various α.
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Reweighting Function

Figure 3.1: Our reweighting function for various values of α.

3.6.3.2 Bounding Am

With the above properties of gα(d) in mind, we can write:

vmAm = vmdm
Am
dm

= gα(dm)dm
Am
dm

= gα(dm)dm

RXm

1−vmXmᵀRXm

(
Xmᵀw − ym

)
√
XmᵀRXm

1−vmXmᵀRXm |Xmᵀw − ym|

= gα(dm)dm
RXm

√
XmᵀRXm

sign(Xmᵀw − ym)
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Therefore:

‖vmAm‖2 ≤
C

α

‖RXm‖2√
XmᵀRXm

=
C

α

√
XmᵀR2Xm

XmᵀRXm

≤
√
λmax[R]

C

α

=
1√

λmin[XVXᵀ + λI]

C

α
=

1√
λmin[XVXᵀ] + λ

C

α
≤ 1√

λ

C

α
.

Hence, by varying α we can change the bound on the magnitude of vmAm, which is precisely

what we need to prevent large outliers from greatly affecting our solution coefficients. Recall

that Bm is not only bounded, but even more importantly, does not depend on the dropped

point (Xm, ym) at all except through its influence on how dropping this point changes the

weights of other points. It is Am that will blow up due to an extreme outlier, and it is

precisely our choice of weight vm that allows us to control this.

3.6.3.3 Impact of Normalizing the Weights

Let us again consider the quantity ‖vmAm‖2, which we took care to bound previously.

This quantity does not yet take into account the normalization that will occur on the vi to

cause them to sum to the number of points, m. Because of our property that the right hand

derivative of gα(d) evaluated at d = 0 must be 0, our bound on ‖vmAm‖2 will not explode

once normalization has been taken into account in realistic situations. Most points will not

be very outlier-like, which means they will be assigned weights close to 1. The normalization

constant that we divide every weight by is 1
m

∑m
i=1 vα(i). If at least a fraction q of our points

have a weight of at least 1− ε for some positive ε, then the normalized weight satisfies

vm
1
m

∑m
i=1 vi

≤ vm
1
m

(qm(1− ε))
=

vm
q(1− ε)

.
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Even in a really extreme case where only half the points are not outlier-like (i.e. q = 1
2
) and

where not being outlier-like is defined very broadly to include any point with weight at least 1
2

(i.e. ε = 1
2
) we get a very moderate bound after normalization, with vm

1
m

∑m
i=1 vi

≤ 4vm. Hence

we see that the property of assigning non-outlier like points a weight close to 1 is essential for

keeping our bound small once normalization is taken into account. When α gets very large,

this property is lost, since essentially all data will be considered an outlier. But we need not

worry about the high α case since that case corresponds to ignoring virtually all of our data,

which means we will not predict accurately and so our stabilized k-fold cross-validation will

not select such an α due to bad out of sample predictions. This also tells us that we need

not try arbitrary high α values during cross-validation. When performing iterations for a

specific α, if we ever find that too many points have too little weight (before normalization)

we can simply stop and not try any α larger than the current one. In practice, we find that

if more than half of the points have an unnormalized weight of less than 1
2

that is good

enough grounds not to try higher α. Using this criteria also implies that the bound on viAi

can’t grow by more than a factor of 4 once we normalize the weights, which is also desirable.

Allowing arbitrary large α prevents us from maintaining such a bound.

3.6.3.4 Relation to Other Work

Consider the quantity we used in the derivation above for measuring outlier-ness,

dm ≡
√
XmᵀRXm

1−vmXmᵀRXm |Xmᵀw−ym|. This is close to the square root of Cook’s distance (Chatterjee

and Hadi, 1986), though normalized differently. Cook’s distance is sometimes used in the

statistics literature as a means to detect outliers so that they can be removed as part of a

pre-processing step. The difference is that Cook’s distance uses no regularization parameter

λ, has no weights vi, and is not used as part of an iterative algorithm. Furthermore, we do

not use dm directly, but pass it first through our function gα(dm) to produce a weight.
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3.6.3.5 Changing the Dropped Point

In the above derivation for dm we assumed it was the mth point that was dropped. But

of course, we care about the influence of all points. So generalizing the work above for all

points, and normalizing the weights so that they sum to the number of points, we will assign

to the ith point a final normalized weight of the following form:

vi =
gα(di)

1
m

∑m
j=1 gα(dj)

where

di =

√
X iᵀRX i

1− viX iᵀRX i
|X iᵀw − yi|.

We note that this is a recursive equation for vi, since the weights occur on both sides, including

within the definitions for R and w. This is why Stabilized Ridge Regression is an iterative

algorithm. We begin with uniform weights vi = 1, which is analogous to Ridge Regression,

then use that to compute R and w which are used to estimate what the weights should be,

then the whole process is repeated until we converge closely enough to a final set of weights.

3.6.3.6 The Existence of a Solution

Since the weights must each be non-negative and they must sum to m, the set of possible

weight vectors v is an m-1 dimensional closed simplex. Our weight vector v is ultimately

defined using an equation of the form v = F (v), where F is a function that maps this compact

convex simplex into itself. Since gα(d) is defined to be continuous, F is continuous as well, so

we can apply the Brouwer fixed-point theorem, which tells us that there exists a point v0

satisfying v0 = F (v0). That means there is at least one solution for our weight vector. In

our empirical tests of Stabilized Ridge Regression, we have found that the iterations of the

algorithm converge quite rapidly to a solution for the weights, usually within 40 iterations,
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but typically much faster. Intuitively, we can see why iteratively applying F to a starting

weight vector will converge to a solution. The presence of an outlier tends to make that outlier

seem less outlier-like than it really is. Once we detect it as an outlier, the next iteration

its weight will be reduced, so it will seem more outlier-like than it did before. This process

continues with the weight of the outlier progressively falling until either it converges, or the

process stops when the outlier’s weight becomes indistinguishable (from a machine precision

perspective) from 0. The story can be more complicated due to the fact that outliers can

mask each other. One large positive label outlier can make a moderate positive label outlier

seem like it isn’t an outlier at first, until the larger outlier has sufficiently reduced weight

(after a few iterations). Another case is where a large feature outlier in one direction makes a

moderate feature outlier in the opposite direction seem like more of an outlier than it really is

until the weight in the first outlier has been reduced. A number of iterations can be necessary

therefore for the weights to resolve themselves.

3.6.3.7 Interpreting dm

The quantity dm is a measure of how outlier-like a point is. The left factor
√
XmᵀRXm

1−vmXmᵀRXm

measures how much of a feature outlier that point is. It utilizes XmᵀRXm, which (when the

features are mean centered) serves the purpose of a multi-dimensional z-score, measuring how

far the point Xm is from the other points. The denominator (1− vmXmᵀRXm) causes our

measurement of how outlier-like a feature outlier is to spike up to infinity as it overwhelms

the effects of all other points. This is desirable because it means that as a feature outlier

approaches being maximally problematic, its score for how outlier-like it is approaches infinity.

Looking now at the right factor of the equation for dm, we see that it measures how much

of a label outlier the point in question is by looking at how much we mispredict that point.

Putting both factors together, dm measures how much of an outlier the point is capturing
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both the notion of a feature outlier and a label outlier. Note that if a point is not at all a

label outlier (i.e. prediction error is 0) then dm is 0, which makes sense because such points

do not change our solution coefficients at all when dropped. Similarly, if a point is not at all

a feature outlier (i.e. XmᵀRXm = 0, where we have no constant term, so our hyperplane

must pass through the origin) then again dm = 0 as expected, because here too dropping the

point can’t effect our solution coefficients.

3.6.3.8 Interpreting α

There are at least three valid interpretations for the parameter α in gα.

1. The parameter α reflects how aggressively we reduce the weight of outliers. A priori,

there is no exact dividing line between outliers and non-outliers. By setting α via

stabilized k-fold cross-validation we are learning from the data the magnitude at which

outliers start having a detrimental impact on prediction performance. When α = 0

we do not penalize outliers at all, but as α grows we assign progressively less weight

to even fairly innocuous points. Generally, we will not select a reweighting function

that separates points starkly into outliers and non-outliers by assigning 0 weight and

maximal weight respectively. But if we were to make such a choice, α would be the

determinant of how many points are deemed outliers.

2. Additionally, α reflects a tradeoff between bias and variance. The lager the value of

α, the more data we are ignoring or at least partially ignoring. Inevitably, some of

this data may have been useful, and so we are potentially biasing our solution. But

the data that we are ignoring is the most extreme data, which had a large impact on

our solution coefficients. So by throwing this data away, we reduce the variance of our

algorithm’s learning process. When α = 0 we minimize bias but accept the possibility

of huge variance (stemming from outliers), and as α grows we reduce our variance by
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reducing the effect of those points that are most extreme.

3. Finally, α controls the maximum size of Ai and Bi for each data point, (X i, yi). Ai

reflects the change in solution coefficients caused by dropping (or equivalently, by

adding) the ith point that is directly due to the label and feature vector that point. On

the other hand, Bi accounts for the change in solution coefficients caused by changes

in weights that occur when this point is dropped. For α = 0 we weight our points

uniformly, which forces Bi to be 0, because dropping the point causes no change in

our weights beyond normalization. But this choice α = 0 means that Am can grow

unboundedly, making the algorithm highly sensitive to outliers. On the other hand, as

α gets larger we constrain Ai (in fact, Ai falls like 1
α

), but now Bi can become larger

since our weights become more sensitive to the data.

We note that α is quite separate in its effects from the standard free parameter λ in Ridge

Regression, and hence supplements it rather than replacing it. The parameter λ acts on the

features, helping us handle cases where there are too many or they are highly correlated,

whereas α acts on the points, helping us handle cases where there are extreme points that

could impact our prediction performance. While both λ and α make the algorithm more

“robust” in an intuitive sense, they provide very different types of robustness that protect us

from different problems.

3.7 Empirical Results

We now consider applying the Stabilized Ridge Regression algorithm to empirical data,

and compare its out of sample accuracy to that of Ridge Regression and Ordinary Least

Squares on synthetic examples where outliers are present. For Stabilized Ridge Regression we

use λ = 0 since in the synthetic cases being used the features of the training data are uncor-
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related (so no λ regularization is needed), and we use use 10-fold stabilized cross-validation

to select α. For Ridge Regression we do what is typically done, using 10-fold cross-validation

to select λ. For Stabilized Ridge Regression our k-fold stabilized cross-validation tries forty

values of α growing exponentially (by a factor of about 2) from 1E-6 to 1E6, and for Ridge

Regression we have the k-fold cross-validation try these same forty values for λ .

Here, we consider two types of outliers: label outliers, where an unreasonably large

label is assigned to one of the pre-existing features, and feature outliers, where a feature

of unreasonably large magnitude is assigned to one of the pre-existing labels. In each of

the figures we use 250 training points and 50 features. The features are generated from an

isotropic multi-variate normal distribution, and the labels are a random linear combination

of the features plus noise. We calculate out-of-sample performance on a test set of 10,000

points that are withheld from training. We use R2 ≡ 1− err
var

as our measure of performance,

where err is the average squared prediction error, and var is the variance of the set set labels.

With this choice 1 is the best possible performance and 0 means that our accuracy is only

as good as predicting the average test set label for all points (i.e. it is the performance of

the best possible constant predictor). By this definition, a negative R2 implies performing

worse than the best constant predictor. We can interpret this performance measuring as the

fraction of the label variance that our prediction method has accounted for.

In the first plot in Figure 3.2, we consider what happens when one point in the train-

ing set has its label replaced with an outlier of increasingly large magnitude. As this

magnitude increases, Stabilized Ridge Regression is essentially unaffected, whereas both

Ridge Regression and Ordinary Least Squares have their performance completely destroyed.

Ridge regression outperforms Ordinary Least Squares slightly in this case, but only in
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regions where both perform terribly, so this outperformance has little benefit. However,

Ridge Regression at least prevents the R2 from going negative, unlike Ordinary Least Squares.

In the second plot in Figure 3.2, we consider what happens when one label in the training

set has its feature replaced with a feature outlier of increasing magnitude. For simplicity we

choose the outlier feature to be a vector where every element has the same value. As the

magnitude of this vector increases, Stabilized Ridge Regression is again essentially unaffected,

whereas Ridge Regression has its performance destroyed rapidly. Ordinary least squares loses

a significant amount of accuracy, but performs much better than Ridge Regression in this

case. As we have discussed, this is due to Ridge Regression’s use of k-fold cross-validation,

which is itself not robust to outliers.

In the third plot of Figure 3.2, we consider what happens when many label outliers of

moderate size are including in the training set by replacing the labels of a number of training

points with numbers generated uniformly at random with moderately large variance compared

to the natural variance of the labels. As the number of such outliers increases, we have the

expected effect: the performance of all algorithms in negatively impacted. But Stabilized

Ridge regression has much slower decline in performance than Ridge Regression and Ordinary

Least Squares.

These three plots in Figure 3.2 tell the same fundamental story. Not only is Stabilized

Ridge Regression impervious to the impact of outliers in all three cases, but Ridge Regression

and Ordinary Least Squares have their prediction performance severely impacted by outliers.

It will surprise some to see that Ridge Regression does not perform significantly better in the

presence of outliers than Ordinary Least Squares in these cases, and in one of these cases it

actually performs worse. One might think that the flexibility to choose λ would help Ridge

108



Regression be significantly more robust in the presence of outliers. But the fact that k-fold

cross-validation is generally used to select the λ parameter presents a unique problem when

outliers are present. As we have mentioned, the usual k-fold cross-validation is itself not

robust to outliers, causing Ridge Regression to do a poor job of selecting λ. For instance, if

there is one extreme outlier, the λ parameters will mainly be selected to minimize the error

on that single outliers in the one k-fold cross-validation fold where that point is withheld.

Hence, λ will depend almost entirely on the outlier, not on the rest of the training data.

3.7.1 Case Study

As a case study, we demonstrate the result of applying Stabilized Ridge Regression to the

Computer Hardware data set (Ein-Dor and Feldmesser, 1987) from the UCI Machine Learning

Repository (Lichman, 2013). This data set reflects characteristics of different computer CPU’s,

with the goal of predicting the relative performance of each processor. Outliers are most

problematic in smaller data sets, since then each point has a greater influence on the final

predictions. And the Computer Hardware data set is indeed small, with 209 points and 6

features to use for prediction (called MYCT, MMIN, MMAX, CACH, CHMIN and CHMAX).

The goal is to predict the label PRP. As before, we measure prediction performance using R2.

We use Stabilized Ridge Regression to train on 80% of the data (selected one time at random),

and test on the remaining 20%. We find that the algorithm assigns all points essentially

equal weights (of about 1.01), except for three points. The point with the most extreme label

is modestly underweighted, with a weight of 0.60. The algorithm considered this point to be

only somewhat outlier-like, despite its large label. The point with the second most extreme

label is assigned a much lower weight, 0.002, because it appears to have elements of both

a label and a feature outlier, and is considered sufficiently outlier-like overall to reduce its

weight dramatically. Finally, the point with the third most extreme label is assigned a weight
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of 0.02. On the out-of-sample data Stabilized Ridge Regression achieves an R2 of 0.87 which

compares positively to Ridge Regression and Ordinary Least Squares, which both achieve an

R2 of only 0.73.

3.8 Conclusion

We showed that Ridge Regression and n-fold cross-validation perform poorly in the

presence of outliers. We introduced a new algorithm, Stabilized Ridge Regression, which

modifies Ridge Regression in order to make it inherently robust to outliers. This new algorithm

performs similarly to Ridge Regression in the absence of outliers, but it automatically reduces

the weight of outliers when they are present. This approach to stabilizing an algorithm

(iterative reweighting with weights based on the change in solution coefficients when a point

is dropped, which are passed through a parameterized weight function) can be generalized to

other cases beyond ridge regression, which we intend to explore in subsequent work.

3.9 Python Code

import numpy as np

from numpy import multiply as mult #element-wise matrix multiplication operator

def stabilized(X, y, alpha, lambd=0, maxIters=50, weightDeg=6, prec=1E-8, singMin=1E-12):

"""Returns the column matrix of solution coefficients for stabilized regression.

X : the n x m matrix of training points with 1 point per column, 1 ft. per row

y : the m x 1 matrix of training labels with one point label per row

alpha >= 0 : how strongly to penalize outliers (alpha=0 gives ridge reg.)

lambd >= 0 : how strongly to penalize large coeffs (ridge reg. regularization)
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maxIters > 1 : the maximum number of iterations before terminating

weightDeg > 1 : the point weights will vi = 1 / (1 + (alpha * zi)^weightDeg)

prec > 0 : will halt if root mean square change in coeffs is less than this

singMin > 0 : when solving lst. squares problems singular values are set to 0

if their ratio to the largest singular value is less than singMin

"""

X = np.matrix(X) #make the feature matrix into a matrix object

y = np.matrix(y) #make the label vector into a column matrix object

if len(y.T) != 1: raise RuntimeError("Label vector y needs exactly one column!")

if len(X.T) != len(y): raise RuntimeError("y row count != X col. count!")

numFeatures = len(X) #assume feature mat. has 1 point per col. and ft. per row

numPoints = len(y) #assume label mat. is a col. vector with 1 pt. label per row

v = np.matrix(np.ones((numPoints, 1))) #the weights we assign to each point

lastc = None #solution coefficients from the last iteration

regularizer = lambd * np.eye(numFeatures) #regularizing mat. lambda*I of ridge reg.

ones = np.matrix(np.ones((numFeatures, 1))) #column vector of all 1’s

for iterationNum in xrange(maxIters):

RX = np.linalg.lstsq(X * mult(v, X.T) + regularizer, X, rcond=singMin)[0]

c = RX * mult(v, y) #solution coefficients using the current weights

if (lastc is not None) and np.sqrt(np.mean(np.square(c-lastc))) < prec:

return c

absE = np.abs(X.T * c - y) #abs. value of the label prediction errors

d = (ones.T * mult(X, RX)).T #di = [X^i’ R X^i]_i

weightedDRatio = np.sqrt(d)/(1.0 - mult(v, d)) #sqrt(di) / (1 - vi di)

v = 1.0 / (1.0 + np.power(alpha*mult(weightedDRatio, absE), weightDeg))

v *= numPoints/float(np.sum(v)) #normalize weights to sum to num. of pts.

#stop if > half of pts. have weight < 0.5
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if np.sum(v>0.50) < numPoints*0.50:

if lastc != None: return lastc #if have a valid solution

else: return c #otherwise, return what we have

lastc = c #save the last solution coefficients

return c
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3.11 Chapter Notes

Lemma 2. For any column vector b, any positive definite matrix P , and any real number σ,

we have:

σbᵀ(P + σbbᵀ)−1b =
σbᵀP−1b

1 + σbᵀP−1b
.

Proof. By the Sherman-Morrison formula (for the inverse of a rank-1 update to a matrix),

we have

(M + uvᵀ)−1 = M−1 − M−1uvᵀM−1

1 + vᵀM−1u

so long as 1 + vᵀM−1u 6= 0. This implies that for any column vector q:

qᵀ(I + qqᵀ)−1q = qᵀ
(
I − qqᵀ

1 + qᵀq

)
q = qᵀq − qᵀqqᵀq

1 + qᵀq
=
qᵀq(1 + qᵀq)− qᵀqqᵀq

1 + qᵀq
=

qᵀq

1 + qᵀq
.
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Now, since our matrix P is positive definite, it has a unique positive definite square root P 1/2

with P 1/2P 1/2 = P . If we let q ≡ P−1/2b
√
σ, then applying the formula above, we can write:

σbᵀ(P + σbbᵀ)−1b = σbᵀ(P 1/2(I + σP−1/2bbᵀP−1/2)P 1/2)−1b

=
√
σbᵀP−1/2(I + P−1/2b

√
σ
√
σbᵀP−1/2)−1P−1/2b

√
σ

=

√
σbᵀP−1/2P−1/2b

√
σ

1 +
√
σbᵀP−1/2P−1/2b

√
σ

=
σbᵀP−1b

1 + σbᵀP−1b
,

which completes the proof.

Since the right-hand side of the identity of Lemma 2 is always less than 1, the following

holds.

Corollary 1. For any vector b, any positive definite matrix P , and any positive number

σ > 0, we have:

σbᵀ(P + σbbᵀ)−1b < 1.
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Stabilized Ridge Regression Performance

Figure 3.2: How does Stabilized Ridge Regression perform when there are outliers? We examine how the
R2 is affected by a single very large label outlier (top figure), a single very large feature outlier (middle figure)
and many moderate sized label outliers (bottom figure). These results are compared to the those of Ordinary
Least Squares, and of Ridge Regression.
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Chapter 4

Safe Statistics

In Chapter 3 we developed an approach to eliminating the negative effects of outliers

in the context of Ridge Regression. In this chapter, we consider the more generic problem

of detecting outliers in an arbitrary vector of real numbers, and how to calculate common

statistics without having to worry about them being heavily distorted by outliers. Solutions

to this problem can also be applied in a machine learning context, for instance to remove

or clip outliers in the training labels, or to pre-process each feature in advance of learning.

Hence, the solutions proposed here could be helpful in the outlier examples that we used to

break Ridge Regression in Chapter 1.

In some ways, the univariate outlier detection that we address here is harder than that

of Chapter 3. Since that was in the context of a supervised learning problem, we had an

objective function that we hoped to minimize, and we were able to use that objective function

to set the strength of outlier penalization. In the setting we consider in this chapter though

there is no clear objective function that we can leverage. On the other hand, in some ways

the setting analyzed in this chapter is significantly easier, since we consider only univariate

data, which removes the possibility of feature outliers and avoids complicated questions about
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the right way to measure the distance between points. In univariate data, our outliers are

expected to be greater than or less than all the other values. The real trick is in figuring out

how large or small a value needs to be such that we should declare it an outlier, and then

deciding how to handle the values that we claim are outliers.

4.1 Introduction

Suppose that we are given a vector v of m real numbers, with each number drawn inde-

pendently from some fixed distribution. We would like to compute statistics on v, for instance

to estimate the mean or standard deviation of the distribution from which its values were

drawn, or to use v as the training labels for a machine learning algorithm. But how can we

do so safely if extreme outliers may be present? It could be that human error, measurement

error, or data corruption has altered some of these values or inserted extra irrelevant ones,

so that what we have access to does not truly come from the distribution of interest. Or it

could be that our data really does come from the distribution of interest, but bad luck has

simply caused an unusually extreme value that could heavily distort our calculations. In this

chapter, we introduce two simple algorithms for detecting and handling outliers in univariate

data for situations like these. These algorithms are designed so that, once applied, statistics

can be calculated safely, without the fear of extreme outliers corrupting the results.

The first algorithm we propose, MAD Removal, is appropriate when we have strong reasons

to think that our data should have been drawn from a specific probability distribution, but

data corruption or other errors may have caused some extreme values that do not fit this

distribution, and furthermore, the location and scale parameters of the theoretical probability

distribution are not necessarily known. For instance, we may have strong reason to believe

our data should come from a normal distribution, but human error may have corrupted
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some of our values, and we do not know the mean and variance of the normal distribution in

advance. What makes such scenarios tricky is that we must robustly estimate the location

and scale parameters from values that may contain extreme outliers, while making sure that

the interpretation of the resulting algorithm does not depend on the sample size, even though

the reliability of our location and scale parameter estimates will inevitably be sample size

dependent. In this context we can think of an “outlier” as a value that is far out in the tail of

the known distribution, where there is a very low probability of finding a value more extreme

than that.

The second algorithm we propose, Impact Clipping, does not require any known distri-

bution, and is for cases where we would like to protect ourselves from any one value in our

data impacting a statistical calculation too much. For instance, we may have a set of values

for which we need to compute the standard deviation, but we may be concerned that extreme

outliers could lead to just one or two values dominating the standard deviation calculation,

making it unreliable. What makes scenarios like this tricky is that we cannot simply look

at the sensitivity of the statistic of interest to each value, since with such an analysis one

outlier can mask the existence of another, or cause a non-outlier to seem like an outlier. In

this context we can think of an “outlier” as a value which, when left unaltered, will have an

excessive influence on the calculation of our statistic of interest, regardless of the presence or

absence of other extreme outliers.

For both algorithms, it is extreme values that are of concern, because values near the

center of the distribution, even if erroneous, are unlikely to cause significant issues for nearly

any application, unless appearing in very large numbers.

We will begin the chapter by discussing some common causes of outliers, followed by some
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existing outlier handling methods from the literature, and then briefly introducing each of

our two proposed algorithms. We will then discuss in Section 4.4 how they excel in two

substantially different settings for handling outliers, followed by a discussion in Section 4.5 of

how big an outlier needs to be to distort the sample mean and standard deviation. After that,

in Section 4.6 we will introduce a list of traits that we would ideally like any outlier handling

algorithm to satisfy, which these two algorithms were designed to do. And finally, in Sections

4.7 and 4.8 we will finish the chapter by discussing MAD Removal and Impact Clipping in

greater detail. All of the Python code from this chapter, including implementations of MAD

Removal and Impact Clipping can be downloaded at the URL found in the footnote below1.

4.2 Causes of Outliers

Outliers, which we can informally define as “data points that are unlike the rest of our

data”, can be caused by many different phenomena. Common causes include the following.

1. Human input error, for instance someone reversing two digits or making a typo

during data entry.

2. Machine error, such as a malfunctioning measurement device or a corrupted data file.

3. Accidental inclusion of wrong data, such as when data from one source is mistak-

enly mixed with data from another source.

4. Bad luck, when a very unlikely extreme event really occurs.

5. Heavy tailed distributions, such as the distribution of company sizes in the United

States.

1 http://www.spencergreenberg.com/code/safe_statistics_code.zip
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For the purposes of this chapter, we do not need to detect which sort of outlier has occurred

in our data. In the case of MAD Removal, we simply wish to remove data that is unlikely to

have come from the true distribution that we expect, and in the case of Impact Clipping, we

simply want to protect statistics that we calculate from being excessively distorted by any

single extreme value.

4.3 Some Techniques in the Literature

Many outlier handling techniques exist, ranging from the simple to the complex. Some

techniques involve visualizing the data, such as the popular box plot method (Laurikkala

et al., 2000), which visually displays the median, lower quartile, upper quartile, largest value

less than the upper quartile + 1.5 IQR, lowest value greater than the lower quartile - 1.5

IQR, and all individual values that fall outside of these boundaries, where IQR stands for

the interquartile range. When a researcher has the time to visually inspect the data, and

enough domain knowledge to make the call about what is and is not an outlier, this can

be a useful method for outlier removal. But when automation is required, or sufficient

domain knowledge is not available to make such a determination in a non-subjective fashion,

visualization techniques may be undesirable. Other classic methods, including Dixon’s Q

test (Dean and Dixon, 1951) and Grubbs’ test (Grubbs, 1950), have problems being applied

or interpreted in the presence of multiple outliers, as we will discuss later on. Some other

common methods do not apply in the unsupervised context that is the focus of this chapter,

since they required a training set for our algorithm to learn from (in which previous outliers

or pervious non-outliers have been labeled as such), the so called “type 2” and “type 3”

methods in the categorization of Hodge and Austin (2004). Still other techniques, which are

designed for multi-dimensional data, make little sense to apply to univariate data, such as

those based on the convex hull, factor analysis, or k-means clustering. The convex hull of
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one dimensional data is useless, factor analysis has no effect on one dimensional data, and

k-means clustering is more suitable for finding inner regions in univariate data that have low

probability, rather than determining which extreme values are too extreme. But only extreme

values are important here, since they are the only values that are likely to mess up analysis

performed on one dimensional data. Another approach, “Distance-based Outliers” as defined

by Knorr et al. (2000b), asks whether at least a specified fraction of points in our data lie at

least a specified distance away from each point under consideration. In the case of univariate

data however, this approach may be a step in the wrong direction, since all we really need to

do is discover cutoffs to determine what values are too extreme, yet this approach introduces

two new parameters (the fraction of data to be considered, and the distance threshold) that

seem as difficult to determine as cutoffs are if not more so. A similar issue occurs when we

define outliers as the n points that have the greatest average (or maximal) distance to their

k nearest neighbors (Niu et al., 2011), as the hard work is then in setting n and k, which

may be as hard or harder to set than a one dimensional outlier cutoff value, which we focus

on in this chapter.

4.3.1 Introduction to MAD Removal

The first algorithm we propose, “MAD Removal”, is appropriate when we have strong

reason to believe that our data should have been drawn (at least approximately) from a

specific probability distribution, but that some fraction of our values may be erroneous or

may have been corrupted. The location (e.g. mean) and scale (e.g. standard deviation) of

this a priori distribution do not have to be known to apply MAD Removal.

The purpose of the MAD Removal algorithm is to ensure that any erroneous or corrupted

values do not substantially distort the conclusions we draw from the data. It works simply
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by removing any values that lie too far from the center, but using a very robust approach to

determine what “center” and “too far” mean. Specifically, it removes values that are too many

median absolute deviations (i.e. MADs, as defined in Equation 4.1) from the median, and the

cutoff threshold is chosen so that, for our known a priori distribution, only about a fraction p

of values will be removed on average. By setting p to a small value, for instance p = 0.001,

we ensure that applying MAD Removal is safe, in the sense that if our data has no corruption

and simply comes from the expected distribution, there is virtually no cost to applying the

algorithm. On the other hand, if there really are erroneous values or corruptions in the data,

the MAD Removal can save us from drawing wrong conclusions based on extreme outliers.

Note that we are only concerned here about extreme values, because although non-extreme

values may also be the result of data corruption or errors, unless they are extremely common

such values will have little impact on relevant statistics that we calculate from the data. Note

also that the median and MAD here are particularly appealing statistics when outliers may

be present. They each have a breakdown point of 50% (Rousseeuw and Croux, 1993), which

is the highest breakdown possible, and which is twice the breakdown of the interquartile range.

In this chapter, we focus on applying MAD Removal to the case where the data is known

to have approximately a normal distribution (except for possible data corruptions), since

that is am extremely common case of interest, and because the central limit theorem implies

that variables that are linear combinations of nearly independent other variables will tend

to produce gaussian distributed data. But in principle the same techniques apply to a very

wide range of possible distributions. The only aspect of the algorithm that hinges on the

distribution is the function that maps sample size into an appropriate cutoff value (i.e. how

many MADs away from the median we consider an outlier) such that only a fraction p

of values will be removed, on average, when the values really are all drawn independently

from that theoretical distribution. In Algorithm 3 we explain our empirical approach for
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fitting this function. A significant benefit of fitting this function empirically is that the

method can then be applied to non-normal distributions easily, plus it avoids potentially

very complicated theoretical analysis of probability distributions. For random variables

X1, . . . , Xm whose values are drawn independently from some distribution, the quantity

(Xi −mediank(Xk))/madk(Xk) can be tricky to study analytically.

4.3.2 Introduction to Impact Clipping

The second algorithm that we introduce in this chapter,“Impact Clipping”, is appropriate

for situations where we have no a priori knowledge of what the distribution that generated our

data is, but we are concerned that extreme outliers could corrupt our statistical calculations.

This is an especially worrisome issue when sample sizes are small, or when values come from

a poorly understood source.

The purpose of the Impact Clipping algorithm is to make sure that our statistic of in-

terest are not impacted too greatly by any one extreme value in the data. It is premised on

the idea that if the decision of whether or not to clip (i.e. limit the magnitude of) a single

value in our data makes a large difference to our estimate of a statistic, then that value is

risky to include unaltered as it is likely to greatly increases the variance in our estimation

process. Therefore, its magnitude should be clipped.

The Impact Clipping algorithm starts by calculating an initial safe and conservative es-

timate of the statistic of interest, as well as a “safe” mean estimate. It does so by sorting the

values and then clipping (i.e. winsorizing) any value that is not within the middle F fraction
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of values. So values smaller than all those in the middle F fraction are set to the smallest of

the middle values, and values greater than all those in the middle F fraction are set to the

largest of the middle values. The algorithm then examines the non-middle values one by one,

starting with the closest to the (safely estimated) mean. For each, it considers how much the

current estimate to the statistic of interest would be altered if, instead of clipping that value,

we include that value in the middle set of unclipped values. If the statistic of interest changes

by more than a fraction I, then we leave that value clipped and stop trying to include values

from that side (i.e. either the left of the sorted vector or the right), since the other values in

that direction are even more extreme. If the statistic of interest does not rise by more than

fraction I then we unclip the current value being considered, add it to the set of middle (i.e.

unclipped values), and adjust our estimate of the mean and standard deviation accordingly.

In this chapter, we use the standard deviation as our statistic of interest for Impact Clipping.

This is a good choice for many purposes, since it is the least robust statistic that is commonly

calculated (and therefore will be conservative when the statistic of interest is a somewhat

more robust statistic like the mean). Additionally, the standard deviation can be updated in

constant time from a previously known value when one value in our data goes from being

clipped to being unclipped, which is desirable from an efficiency standpoint.

4.4 Two Settings for Handling Outliers

The appropriate way to handle outliers depends on context. In this chapter we consider

two different contexts for outlier handling, both of which arise frequently.
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4.4.1 Case 1: Known Distribution With Possible Corruption.

We may, for theoretical reasons or based on passed experience, have good reason to believe

that our values were drawn from a distribution that approximately matches some known

distribution, yet still have to consider the possibility that some of the values are erroneous or

have been corrupted. For instance, a psychologist may have good reason to believe that the

amount of a certain behavior is normally distributed in the population, but have to contend

with the possibility that some participants in their study mistakenly entered unrealistically

high values. Or to give another example, a physicist may have theoretical reasons to believe

that a variable that is measured electronically should follow an exponential distribution, but

be wary of occasional machine failures that yield very large measurement error.

It is in cases like these cases that our MAD Removal algorithm applies. As mentioned,

in this chapter we focus on the case where the theoretical distribution is a normal distribu-

tion, but the same process will apply to a wide range of distributions, so long as they are

parameterized only by a parameter of location (like the mean) and a parameter of scale (like

the variance).

4.4.2 Case 2: Unknown Distribution With Possible Extreme Val-

ues.

In some cases we do not have a priori knowledge of what distribution our data will be

generated by. However, if our use for the vector v is such that an extreme outlier could cause

high variance in our estimates or inaccurate results, we may want to reduce outliers. For

instance, a financial analyst may want to estimate the standard deviation of transaction

prices, but worry that there could be a few extreme prices that dominate the calculation. Or

an economist may be performing regression analysis, and be concerned that the prediction
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variables (i.e. training labels) may have extreme values that would distort the solution

coefficients. For cases like these where no known theoretical distribution can be assumed,

and where the main concern is preventing extreme values from having too great an influence

on our calculations, we recommend outlier clipping (i.e. winsorizing) rather than outlier

removal. One advantage of outlier clipping is that it create less bias than outlier removal.

But additionally, in this case we cannot be confident that extreme values do not truly come

from the distribution of interest, since we do not know that distribution. All that we can say

is that extreme values increase the variance of our statistical calculations, and may cause

them to be unreliable. Hence removing values completely may be discarding genuine value,

whereas clipping is a more moderate approach that simply limits the influence of such values.

It is this sort of situation that Impact Clipping algorithm was designed for. The algo-

rithm is based on the fact that in these cases our main worry is that our statistics will be

overly influenced by any one value. Hence, the algorithm is designed to clip extreme values

in such a way that the impact any such extreme value can have on a statistic of interest

(in terms of percentage change caused by including that value unclipped) is limited. As

mentioned, we focus in this chapter on the standard deviation because it is generally the

least robust statistic of common interest.

In the next section, we consider how large a value an outlier must be in order to create

problems for some common statistics.
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4.5 Outlier Impact on the Mean and Standard Devia-

tion

The sample mean and standard deviation can be arbitrarily corrupted by a single suffi-

ciently bad outlier. Let us consider how big an outlier value has to be to increase (i.e. distort)

the mean and standard deviation by a given amount d > 0. Without loss of generality, we

assume that the last value of our vector v, i.e. the mth value, is our outlier, and we denote

the value of this outlier z ≡ vm. Let µm be the sample mean calculated using all m values (i.e.

including the outlier value z), and let µm−1 be the mean when calculated using just the first

m-1 values (i.e. with the outlier omitted). Similarly, let σm be the sample standard deviation

with all m values, and σm−1 be the standard deviation when the outlier is omitted. Hence:

µm =
1

m

m∑
i=1

vi µm−1 =
1

m− 1

m−1∑
i=1

vi

σm =

√√√√ 1

m− 1

m∑
i=1

(vi − µm)2 σm−1 =

√√√√ 1

m− 2

m−1∑
i=1

(vi − µm−1)2

We now would like to figure out how big z will have to be to cause different distortion

fractions, d, to each statistic. For the sample mean, we therefore would like to solve for the

outlier value z such that:

µm
µm−1

= 1 + d

Solving for z in terms of µm−1 yields

z = µm−1 +mdµm−1

so the size of the outlier depends linearly on the mean of the non-outlier values, the vector

size m, and the distortion factor d. In particular, as m gets larger, the size the outlier needs
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to be to distort the mean a fixed amount grows proportionally. So for example, using data

which (without the outlier value) has mean µm−1 = 1, the mean will be distorted by 20%

when z = 1 + 0.2m.

For the standard deviation, we similarly want to solve for the outlier value z > µm−1

such that

σm
σm−1

= 1 + d

which gives us

z = µm−1 +

√
m

m− 1

√
1 + (m− 1) ((d+ 1)2 − 1)σm−1,

which grows linearly in µm−1 and σm−1. For m large, we can approximate this formula as:

z ≈ µm−1 +
√
m
√
d(2 + d) σm−1.

So for instance, if the data without the outlier has a mean µm−1 = 0 and a standard

deviation σm−1 = 1 then the outlier distorts the standard deviation by 20% when z ≈ 0.66
√
m.

Comparing this
√
m dependence to the m dependence that we witnessed for the mean makes

it clear why the standard deviation is much less robust to outliers. For m reasonably big, the

outlier value will need to be much larger to corrupt the mean than to corrupt the standard

deviation.

4.6 Desired Traits for Outlier Detection Algorithms

We now propose a list of traits that it is usually desirable for any method of handling

outliers (in univariate data) to satisfy. MAD Removal and Impact Clipping are designed to
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have these traits.

1. Has the ability to handle multiple outliers. Since in real data we cannot be

confident that there will be at most one outlier, the ability to detect just a single outlier

is usually of limited usefulness. The classical Dixon’s Q test (Dean and Dixon, 1951),

based on an assumption of normally distributed data, which involves subtracting the

value of a possible outlier to the sample value closest to it and dividing by the range of

the data, is an example of a simple method for detecting outliers that is only designed

to detect one outlier per data set.

2. Causes little bias / loss of efficiency on data from “nicely behaved” distri-

butions. If a distribution is nicely behaved, we expect it to very rarely have outliers

worth worrying about. In such cases, we ideally want any outlier handling algorithm

applied to such data to cause very little bias or loss of efficiency on average. Thanks to

the central limit theorem, sums of independent or nearly independent random variables

tend to produce data that is normally distributed, so normally distributed data occurs

commonly in practice. Furthermore, normally distributed data has “thin tails”, meaning

that it is very unlikely to produce extreme outliers by chance alone. It is therefore

the quintessential case of a random process that is essentially free of extreme outliers,

and so for most purposes serves as a good model of a “nicely behaved” distribution

that we expect a good outlier handling method to affect very little. When this is

the case, we are safe applying the method to data that we have strong reasons to

think should be normally distributed, as there is little cost to doing so if it really is

normally distributed as we expect, but if there are extreme outliers due to errors or data

corruption, the outlier handling algorithm should help. As an example of an algorithm

that violates this mandate, consider winsorization. As usually applied, it means that

for some percentile q, the values below the qth percentile are set to the qth percentile,
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and the values above the (100-q)th percentile are set to the (100-q)th percentile. If we

apply this process to independent, normally distributed values when the sample size is

large then we underestimate the standard deviation by about 9% for q = 5%, 18% for

q = 10%, and 36% for q = 20%. Even more distortion occurs if, instead of winsorizing,

we simply remove values below the qth percentile and above the (100− q)th percentile.

In that case, we underestimate the standard deviation by about 21% for q = 5%, 34%

for q = 10%, and 54% for q = 20%. Any algorithm that removes or clips extreme

values will have a bias towards reducing the standard deviation, but this level of bias is

unacceptably large for many applications. The main exception, where we would not

care whether our outlier handling algorithm causes significant bias or a substantive loss

of statistical efficiency on normally distributed data, is when we have strong reasons to

believe that our data was generated by some specific other distribution. In such cases,

it is the performance on that specific distribution that is of interest.

3. Uses an outlier criteria which does not depend on the extremity of more

extreme outliers. When we are trying to tell whether one particular point is an

outlier, our answer should not hinge on the level of extremeness of another, even more

extreme outlier. Otherwise, our decision procedure for determining what is an outlier

is not itself robust to outliers! When the criteria for detecting an outlier is impacted

by the extremity of other outliers, it leads to the two very unappealing phenomena of

“masking”, where one large outlier hides another, and “swamping”, where the presence

of an outlier will make a non-outlier seem like an outlier. For an example of masking,

suppose that our outlier handling criteria is to simply remove every value that is more

than 4 standard deviations away from the mean of the values. This presents a problem

because the standard deviation calculation is highly sensitive to the extremeness of

any outliers that our present. Therefore the presence of one very extreme outlier may
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prevent us from removing another, somewhat less extreme outlier, due to the first

outlier making the standard deviation artificially high. To be specific, suppose we have

100 values that are generated from a standard normal distribution with mean 0 and

standard deviation 1, and then we add two outliers, one with the value 100, and the

other with the value 1000. Due to the presence of the outliers the mean and standard

deviation end up being about 11 and 99, meaning that the smaller outlier value of 100

is only about 0.9 standard deviations from the mean, even though it would have close

to a 0% chance of having been drawn from a standard normal distribution! In other

words, the larger outlier makes the smaller outlier look like a non-outlier due to the

masking effect.

4. Has a meaningful interpretation for its outlier cutoffs. Ideally, we should be

able to meaningfully interpret the cutoffs used by any univariate outlier handling

algorithm in its determination of what is and is not deemed an outlier. Having such

an interpretation can help us conclude whether the outlier handling procedure is

appropriate to use in our particular case. As an example of an outlier detection method

that lacks a meaningful interpretation, consider Grubbs’ test (Grubbs, 1950), which

assumes that the values of interest were drawn from a normal distribution. It evaluates

each potential outlier by performing a significance test at significance level α. It does

so by using a random variable which is constructed to be the variance of the sample

without that potential outlier included, divided by the variance of the sample when

that potential outlier is included. This test can be applied for each extreme value in

decreasing order of extremeness. Whenever a value fails the test, it can be removed

from the sample and then the process can be repeated. Now, if the data were in fact

normally distributed with exactly one potential outlier added, then the cutoff for the

test would have precisely the intended interpretation, calculating the probability of
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getting a change in variance at least this extreme by including the potential outlier

compared to excluding it, under the null hypothesis that the remaining values were

drawn from a normal distribution with no outliers. The problem is that when there

are multiple outliers this intuitive interpretation fails, potentially in a large way, since

the remaining data will not in that case be normally distributed. Hence, the cutoff for

the test statistic does not have a meaningful interpretation in the presence multiple

outliers, since its interpretation is based on an assumption that we know to be violated.

4.7 Details of the MAD Removal Algorithm

We now discuss the MAD Removal Algorithm in greater detail.

In some cases we have a strong theoretical reasons to believe that our data should be

drawn from a particular distribution, but with the possibility of data errors or corruptions. In

such a case, values lying much further from the center than is typical with that distribution

are suspicious, and are likely to be the result of human error, measurement error, or data

corruption, rather than truly having been drawn from the distribution of interest. It is

precisely such a situation that the MAD Removal algorithm is designed for. For each value,

this algorithm simply looks at how many median absolute deviations (i.e. MADs) that value

lies from the median, where MADs are defined as:

mad(v) = median(|v −median(v)|). (4.1)

with the absolute value and subtraction applied element-wise. Note that for the normal

distribution, one MAD is equal to about 0.67 standard deviations. In the MAD Removal

algorithm, any value that lies too many MADs from the median is removed. But how many
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MADs is too many? We set the cutoff so that when applied repeatedly to vectors of m values

drawn from our known theoretical distribution, only a fraction p of those values is removed,

on average. Note that this is not quite the same as saying that each individual vector element

has a probability p of being removed when drawn from the theoretical distribution, since we

are looking at the average number of elements removed across many random draws of such

vectors, not within each such vector.

The reason that we remove data in MAD Removal rather than clip (i.e. winsorize) it

is because, due to our strong expectation about the true distribution that generated the data,

and a small value for p (such as p=0.001), outliers have a substantial chance of being bad or

corrupted data, rather than being regular values that are merely far from the center due to

unlikely chance events.

If we have strong reasons to expect our chosen theoretical distribution, the MAD Removal

algorithm can be applied safely, with virtually no cost. If the data actually was all drawn

from this distribution, then the algorithm will scarcely alter the values at all, so statistics of

interest will be essentially unaltered. On the other hand, if there are extreme outliers that

are due to corruptions or mistakes, these will generally be removed by the algorithm. And,

in fact, the MAD Removal algorithm will generally have little to no effect on data drawn

from distributions that are even “nicer” than our theoretical distribution. For instance, if we

use the normal distribution as our theoretical distribution, a very small fraction of values

will be removed on average from data that accidentally comes from a uniform distribution or

symmetric triangular distribution instead of a normal distribution. Hence, the algorithm will

behave nicely even if our assumptions about the theoretical distribution are wrong, as long

as they are wrong in the sense of us overestimating the distribution’s likelihood of extreme

values rather than underestimating it.
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The MAD Removal algorithm is designed to satisfy all of our desired traits from Section 4.6

for an outlier detection algorithm. It easily handles multiple outliers. It has almost no bias

and very high efficiency when applied to normally distributed data (when p is chosen to be a

small number such as p = 0.001, and when the theoretical distribution is as nicely behaved

or less nicely behaved than a normal distribution, as will usually be the case). Additionally,

our determination of what is deemed an outlier is highly robust, because both the MAD and

median are themselves highly robust, insensitive to the extremeness of all values except the

least extreme 50% of the data. What is more, the MAD Removal algorithm has a meaningful

interpretation for its cutoff value, which is that it is set to remove only a fraction p of values

on average when the data comes from our theoretical distribution.

The idea of using MADs from the median to determine what is an outlier is of course

not a new concept. However, typically static cutoffs have been recommended for what

is deemed to be too far from the center, for instance 2.5 or 3.0 MADs from the median

(Rousseeuw and Croux, 1993). Other recommendations include forming so-called “modified

z-scores” for each value vi, given by,

zi ≡ 0.6745
|vi −median|

MAD

where the constant in front is the MAD of a standard normal distribution, and then we

discard values when these z-scores are bigger than 3.5 (Iglewicz and Hoaglin, 1993). But any

static cutoff like this lacks a meaningful fixed interpretation, as the interpretation changes

with both the sample size and the underlying distribution that we expect. The challenge we

are faced with is setting the cutoff in a meaningful, sample size independent way.
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Once we have assumed a particular theoretical distribution for our data (but with the

possibility of data corruption or errors), it is non-trivial to construct a function that maps

sample size into a cutoff such that a fraction p of values will be removed, on average, for

values sampled independently from our theoretical distribution. We introduce a procedure

for learning such a mapping, which we find through a process of numerical estimation and

curve fitting. Details of this process are shown in Algorithm 3, under the assumption that

the theoretical distribution is a normal distribution. However, the approach can easily

be modified for a wide range of theoretical distributions, so long as the distribution has

no unknowns other than a location parameter (such as the mean) and a scale parameter

(such as the standard deviation) which the algorithm accounts for automatically. The only

changes in the procedure that are needed are (a) randomly sampling from the theoretical

distribution instead of from the normal distribution, and (b) setting the asymptotic constant

αp so that it corresponds to the number of MADs from the median one needs to include

such that a fraction p of values from the theoretical distribution are included in the limit

as the sample size goes to infinity. Once the appropriate map from sample size to a cor-

responding cutoff is fit, it can be used as in Algorithm 4 to apply the MAD Removal procedure.

Note that in the special case where our sample size is large, and the underlying probability

distribution is a symmetric one, the MAD removal algorithm becomes very simple. It tells us

to remove any value that is outside of the range [median−αp ∗MAD,median+αp ∗MAD],

where αp =
F−1(1− p

2
)−F−1(1/2)

1
2

(F−1(3/4)−F−1(1/4))
, and F−1(p) is the inverse cumulative distribution function of

our assumed distribution. When p = 0.001, and the underlying data is normally distributed,

we get αp ≈ 4.87854. Using this asymptotic approximation rather than the more reliable

complete algorithm leads to underestimating the outlier cutoff by about 20% when m = 42,

as well as 3% when m = 220, and 1% when m = 600. For p = 0.01 on the other hand, we

have αp ≈ 3.81893, and for p = .0001 we have αp ≈ 5.7682.
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Those accustomed to null hypothesis testing may be tempted to use p = 0.05, but this

is not small enough, and defeats the purpose of this algorithm. The choice of p, which

determines on average how many values will be removed when your data really is generated

by your distribution of interest, needs to be set so that very little data is removed when

no outliers are present. This is so that the outlier removal method is safe to use with very

little cost, meaning that applying it when there are no outliers will have almost no impact

on subsequent analyses performed. The choice p = 0.05 will remove 5% of data when there

are no outliers, which is often too much (e.g. when subsequently calculating the standard

deviation). We recommend p = 0.001. Smaller values of p can of course be chosen to be

even more cautious, but there are diminishing returns for using smaller p’s, and we would

only recommend them when subsequent calculations that will be performed on the data are

extremely sensitive to missing values, or if the theoretical distribution of interest has very

heavy tails.

Once the MAD Removal algorithm has been applied, we can compute the statistics that

we like on our vector of interest. For instance, we can compute the “MAD Mean”, µMAD,

which is just the sample mean of a vector after MAD Removal has been applied, or the

“MAD Standard Deviation”, σMAD, which is just the sample standard deviation after MAD

Removal has been applied. These statistics are of course far more robust to outliers than

their ordinary counterparts.

It is important to emphasize that the MAD Removal algorithm is only intended for cases

where there are strong reasons to believe that the data was generated by our chosen theoretical

distribution (plus possible data errors or corruptions), or another distribution that is even

more nicely behaved than our chosen one. Only in such cases can values that are extreme
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reasonably be viewed as errors or corruptions rather than simply legitimate values that lie far

from the center. If such an assumption cannot be made, and the data in fact may be truly

drawn from a thicker tailed distribution, we do not recommend applying MAD Removal.

For instance, if we choose the normal distribution as our distribution of interest, then when

MAD Removal is applied to a log-normal distribution, 5%− 10% of the largest values may be

removed by the algorithm, which will substantially distort its subsequently estimated mean

and standard deviation.

What makes the MAD Removal algorithm particularly unsuitable for situations where

the expected distribution is unknown is that, in the limit as the same size goes to infinity, the

algorithm will continue to produce a bias estimate of statistics like the standard deviation,

even though in that limit an outlier (no matter how big) has no impact on the result. The

reason is because MAD Removal is designed to remove data that is unlikely to have come

from the distribution of interest, rather than to produce an unbiased estimate if the data

comes from other, thicker tailed distributions. In cases where there is no strong reason to

expect a particular distribution, the Impact Clipping algorithm is preferred.

In Figures 4.1 and 4.2 we plot the fraction of values that MAD Removal (using a nor-

mal distribution as the underlying theoretical distribution) ends up removing, on average,

when applied to data drawn from various distributions, for three different choices of p. The

straight horizontal lines achieved in the normal case at the top of Figure 4.1 shows pre-

cisely what we expect, that when applied to values that actually were drawn from a normal

distribution, a fraction p of values are removed on average.
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4.7.1 Implementing MAD Removal

To implement MAD Removal, we begin with a minimum and maximum vector size, t1 ≥ 3

and t2 >> t1 respectively, to be used in constructing the model (we recommend t1 = 4 and

t2 = 120). We also need to select a number, p > 0, which reflects the fraction of the data that

we desire the algorithm to remove when values are independent and drawn from a normal

distribution (we recommend p = 0.001). Finally, we need to select and a number of samples,

s, to use in our simulations for each size of vector (since we will be fitting a part of our the

model empirically). We recommend s = 90, 000 but more can be used for increased accuracy

in the constructed model.

The details of how we approximate the map from the sample size into the appropriate

outlier cutoff is shown in Algorithm 3, which focusses on the normal distribution case. Note

that when curve fitting during this algorithm, we fit the cases where m is even separately

from the cases where m is odd, since the median behaves quite differently in each (i.e. it

averages the middle two values in the former, and selects just the lone middle value in the

latter). That means that there will be two sets of numbers for a,b,c,d (see Algorithm 3) and

the cutoff function r(m) = f(m, a, b, c, d) will use one such set of a,b,c,d when m is even,

and the other when m is odd. The resulting cutoffs from this curve fitting procedure, in

comparison to the empirical cutoffs these curves are fit against, are show in Figure 4.3. The

magnitude of the error of the fit curves versus the empirical values is shown in Figure 9.1

The cutoff function that we fit during this process is then applied in Algorithm 4. And the

corresponding Python code for applying MAD Removal for a previously fit cutoff function is

shown in Section 4.11. The implementation given has running time on the order of m log(m)

since it relies on sorting the values. However, if a fast selection algorithm like Hoare’s selection
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algorithm is used to compute the median and MAD, it will have running on the order of just

m.

4.7.2 Extensions of Mad Removal

In principle, the MAD Removal concept may be generalizable to higher dimensions, though

doing so does present challenges. Rather than a vector of values v, in the multidimensional

context we have a matrix V with one point V k per column, and one feature Vj per row. We

assume that each feature of each point is drawn independently from some known distribution,

except with possible corruption or errors. Then, one potential approach for applying MAD

Removal in this context is to define a robust alternative to the covariance matrix, for instance

the matrix D where:

Dj
i =

√
median

(
(Vi −median(Vi)) ∗ (Vj −median(Vj))

)

where * is the element-wise multiplication operator, and the differences are also taken

element-wise. Note that this is a multi-dimensional generalization of the MAD, since

Di
i =

√
median

(
(Vi −median(Vi))2

)
= mad(Vi).

Then, we can measure each point’s natural distance to the center of the distribution using:

disti =
√

(V i −medians)ᵀD−1(V i −medians).

where medians is a vector where the jth element is the median of the jth feature of V. This

quantity disti generalizes to multiple dimensions the notion of “number of MADs from the

median”.
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One would then empirically, for each dimension n and each number of points m, find

the cutoff such that when each feature of each point is drawn independently from the chosen

theoretical distribution, on average only a fraction p of them would have a dist value larger

than that cutoff. Points with dist values greater than that would be discarded. This approach

seems to naturally generalize the univariate one, but it has challenges, including the difficulty

of accounting for both m and n (rather than just m as in the univariate case). Furthermore,

the matrix D would need to be investigated to make sure it is always positive definite. And

finally, there is the question of how well this method would work in the case where the

features of each point really do come from the chosen theoretical distribution, but where

they are not drawn independently. We leave these questions open as a potential future line

of inquiry.

Note that MAD Removal, as defined here, is most appropriate when the underlying theoreti-

cal distribution that we have reason to believe our data comes from (though with possible

corruptions) is at least reasonably symmetric. While the MAD statistic does not apply just

to symmetric distributions, it operates by calculating a symmetric range around the median

within which 50% of the data lies (Rousseeuw and Croux, 1993), making it most suitable to

symmetric situations. For highly non-symmetric distributions, the MAD Removal algorithm

could be modified so that the MAD is replaces with the interquartile range, and rather than

finding a single cutoff such that only a fraction p of our data is removed when it comes from

our theoretical distribution, we could instead find two cutoffs, one to the left of the median

and one to the right, such that when our data is drawn from our theoretical distribution a

fraction p/2 will be removed on average from each side of the median.
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Algorithm 3 Preprocessing For the MAD Removal Algorithm (Normal Distribution Example)

1: For each vector size, m, from t1 to t2

2: Generate s vectors vi of length m, with each entry independent and normally

distributed (i.e. drawn from our theoretical distribution of interest) with mean 0 and

standard deviation 1.

3: For each such vector vi calculate the vector zi = 1
αp
|v
i−median(vi)

mad(vi)
|. We will

use the notation erf−1 to mean the inverse of the erf function, which itself is defined as

erf(z) = 2√
π

∫ z
0
e−t

2
dt, where the constant αp ≡ erf−1(1−p)

erf−1( 1
2

)
≥ 0 is the asymptotic adjustment

factor (for the normal distribution) handling the case of large m (i.e. the asymptotic

number of MADs from the median to remove a fraction p of values when they are

drawn from our theoretical distribution as m → ∞). For all symmetric distributions

the asymptotic adjustment factor is αp =
F−1(1− p

2
)−F−1(1/2)

1
2

(F−1(3/4)−F−1(1/4))
, where F−1(p) is the inverse

cumulative distribution function.

4: Assemble all the zi into a size sm one dimensional vector g = (z1, . . . , zm).

5: Define um to be the (1 − p)th percentile value of g, so that approximately a

fraction p of values in g are larger than um. Note that there is one um per vector size m.

6: Form the vectors qodd = (ut1 , ut1+2, ut1+4, . . .) and qeven = (ut1+1, ut1+3, ut1+5, . . .).

7: Solve for the optimal parameters a,b,c, and d in the function

f(m, a, b, c, d) = 1 +
1

b md

log(m)c
− a

to minimize the sum of squared errors
∑t2

m=t1
(f(m, a, b, c, d) − qm−t1+1)

2 using the

Levenberg-Marquardt algorithm with 5000 iterations and starting point a = b = c = d = 1,

first for q = qeven then for q = qodd, giving us two sets of a,b,c,d.

8: The MAD Removal algorithm will remove values outside of median(v)± cutoff(m) mad(v)

where cutoff(m) = αpr(m) = αpf(m, a, b, c, d) and a,b,c,d are the optimal constant values

found in our prior step (taking care to use the a,b,c,d fit to qeven if m+ t1 is even, and

the values fit to qodd if m+ t1 is odd). On average about a fraction p of those values will

be removed when the data is normally distributed. Note that limm→∞ r(m) = 1.
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Algorithm 4 The MAD Removal Algorithm (applying the previously created model)

1: If v.size < t1: return v unaltered.

2: if mad(v) = 0: return v unaltered.

3: cutoff = αp r(m)

4: boundary = cutoff ∗mad(v)

5: If mode = “remove outliers”:

6: For each vi > median(v) + boundary: remove vi from v.

7: For each vi < median(v)− boundary: remove vi from v.

8: Otherwise, if mode=“clip outliers”:

9: For each vi > median(v) + boundary: set vi = median(v) + boundary.

10: For each vi < median(v)− boundary: set vi = median(v)− boundary.

4.8 Details of the Impact Clipping Algorithm

In situations where we do not have a strong theoretical reason to expect a particular

underly distribution, the MAD Removal algorithm is not appropriate. Hence, we introduce

the Impact Clipping algorithm. The idea in this case is that we want to make sure the

calculations we perform on our vector v are not overly influenced by any single value in the

vector. For instance, if our sample standard deviation was altered by 50% based on the

decision whether or not to clip the value of one particularly extreme value in our vector, then

we should view the result as suspect. In such a case, the variance of our standard deviation

estimation procedure itself may be unacceptably high. The Impact Clipping algorithm

therefore is designed to limit the amount that any one value can impact our statistics, while

additionally satisfying the criteria for an outlier removal algorithm from Section 4.6. In

particular, the algorithm was carefully designed so that the criteria for whether a value is

determined to be an outlier (and therefore, whether that value is clipped) does not depend

on the level of extremeness of outliers more extreme than the value under consideration. This
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prevents the swamping and masking problems that plague many outlier handling techniques.

In principle, for Impact Clipping any statistic of interest could be used when setting the

maximum amount that a single value is allowed to change the result. For our implementation

in this chapter though, we choose the standard deviation because it is the least robust statistic

that is commonly of interest. Hence, Impact Clipping, as described here, is designed to limit

the impact of any one value in the vector v on the standard deviation that we estimate using

v. If it turns out that what we are most interested in is another statistic, like the mean,

which is less sensitive to outliers than the standard deviation, then this procedure will still

work fine as implemented here. It will simply clip values more aggressively than is strictly

required to limit the impact of any one value on the mean.

Impact Clipping has two parameters. To understand these parameters, it is easiest to

think about u, which is a copy of v that has been sorted in ascending order, and which is

0 indexed, so that u = (u0, . . . , um−1). The first parameter is F , which is the approximate

fraction of the values at the middle of u that we we want to be certain not to alter with the

algorithm. We recommend setting F = 0.90, since it is unlikely that more than 5% of values

on either side of u will be extreme outliers. However, in cases where a larger rate of extreme

values may occur, a smaller F can be used, such as F = 0.80.

The second parameter of Impact Clipping is I, which is the fractional amount that a value is

allowed to increase our current estimate of the standard deviation (when we go from clipping

it, to no longer clipping it) such that we are willing to allow that value to be unclipped. Our

algorithm will start off treating as clipped any value outside of the middle F fraction of values

of u. This means that, to start, values less than that of the left edge of the middle F values of
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u are set to the value at the left edge of the middle, and values greater than that of the right

edge of the middle F are set to the value at the right edge of the middle. We then proceed to

try adjusting our clipping so that it starts instead one value to the left, or one value to the

right. We try the values closest to our original (clipped) estimate of the mean first. We only

accept a clipping change (i.e. shift which value we start clipping on either side at) when doing

so does not cause our current (clipped) standard deviation estimate to increase by more than I.

We recommend setting I = 0.20, meaning that a value will only be unclipped if doing

so increases the standard deviation by less than 20%. If this sounds high, keep in mind that

when a value is unclipped, it raises the clipping of the other potential outlier values (on its

same side from the middle that are more extreme than it) to precisely its own value. So

the amount the standard deviation changes depends not just on the value itself, but on the

amount that unclipping it raises the clipping of other values. In other words, the change in

standard deviation is based on raising the clipping of all values this extreme to the value

under consideration. Using I = 0.05 is too small for most purposes, and I = 0.50 is too

large. Note that for F = 0.90 and I = 0.20 when m = 30 only about 1 in 1000 values will be

clipped on average when our data comes from a normal distribution, as shown in Figure 4.5.

Having little impact on normally distributed values is desirable, as explained in Section 4.6.

It is also important to note that for small F = 0.90 a somewhat larger I should be used, since

when there are fewer values in the middle unclipped region, changing the clipping impacts

more values at once and so is expected to cause a somewhat larger standard deviation increase.

Note that in cases where we might apply Impact Clipping to estimate quantities like the

mean and standard deviation, one may be tempted to instead simply replace them with

alternative, more robust statistics, such as swapping the mean with the median and the

standard deviation with the interquartile range. In some cases, the median and interquartile
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range are no less appropriate for achieving our particular goals than the mean and median,

and so this substitution is perfectly reasonable. But in other cases, what we actually want

is an outlier robust estimate of the mean and standard deviation, not just any measure

of location and scale. In such cases replacing (for instance) the sample mean with the

sample median can be misleading, as the two can differ substantially even when outliers are

not present, and even in the limit as the sample size goes to infinity. An example of this

phenomena is shown in Figure 4.7. Hence, if what we truly care about is the mean, then

we should estimate it in an outlier robust way, not switch to an alternative statistic like the

median.

In Figures 4.5 and 4.6 we plot the fraction of values that Impact Clipping (using the

standard deviation as our statistic of interest) ends up removing, on average, when applied to

data drawn from various distributions, for three different choices of I. Notice that while the

fraction of values clipped generally decreases with m (since the bigger m is, the less influence

each value has on the standard deviation), there are occasional discontinuities where the

fraction clipped jumps up. This is caused by the discrete nature of the operation of taking

the middle fraction F of values. We are constrained in our selection of middle values by three

requirements: (1) the number of middle values must be at least one, (2) we must keep an

equal number of values on either side of the middle so as to avoid directional bias, and (3)

the number of middle values must be an integer even though Fm usually is not an integer.

To satisfy all these constraints, our initial guess for how many values the middle (i.e. initial

unclipped set) should have is either Fm or 2 (whichever is bigger), and then we round down

either by one or by two, whichever leaves us with an equal number of values on both sides of

the middle. With F = 0.90 this leaves us with a jump at m = 21, where we go from having

one value on each side of the middle to two values on each side of the middle, with the next

jumps happening at m = 41, m = 61, etc. As the sample size gets larger the jumps become
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less impactful, since going from 1 value on each side of the middle to 2 is a much greater

change than, for example, going from 9 on each side to 10.

4.8.1 Implementing Impact Clipping

For integers s ≥ 0 and e < m, we define the clipped mean µs,e of a zero-indexed vector

u = (u0, u1, . . . , um−1) of real numbers, whose values are sorted in increasing order, to be:

µs,e ≡
1

m

(
s us +

e∑
i=s

ui + (m− e− 1) ue

)
. (4.2)

This is just the mean that we would get if the values less than us in u were all set to us, and

the values greater than ue were all set to ue. In other words, we have winsorized u and then

taken its mean. Analogously, we define the clipped mean of squares:

µsqs,e ≡
1

m

(
s u2

s +
e∑
i=s

u2
i + (m− e− 1)u2

e

)
(4.3)

which is the same as the clipped mean, except with each element of u being squared. Finally,

we can define the clipped sample variance as:

σ2
s,e ≡

m

m− 1
(µsqs,e − µ2

s,e). (4.4)

where the factor m
m−1

is needed because an unbiased sample mean normalizes by 1
m−1

, unlike

the mean which normalizes by 1
m

. This formula is simply the usual one for writing the

variance in terms of the mean and mean of squares, but applied to the clipped mean and

clipped mean of squares.

The quantities µs,e and µsqs,e have the convenient property that they can each be updated in
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constant time when s decreases by one or e increases by one. Therefore, σ2
s,e shares the same

property, since it is merely a function of µs,e and µsqs,e, as shown in its definition above. In

particular, we can efficiently update these quantities as s decreases by one or e increases by

one by writing:

µs−1,e = µs,e +
s

m
(us−1 − us) (4.5)

µsqs−1,e = µsqs,e +
s

m
(u2

s−1 − u2
s) (4.6)

and

µs,e+1 = µs,e +
m− e− 1

m
(ue+1 − ue) (4.7)

µsqs,e+1 = µsqs,e +
m− e− 1

m
(u2

e+1 − u2
e). (4.8)

With this notation in place, we can explain the Impact Clipping algorithm in detail. We

start with a vector v that we want to handle outliers in, make a copy u, which we sort in

increasing order. We then begin our process with a fraction p of values (in the middle of u)

that we want to leave unmodified, giving us τ unmodified values in the center (which is at

most p m), ensuring an equal number of values to the left and right of those middle values.

We then set s to the index of the smallest of the middle τ values, and e to the index of the

largest of the middle τ values. We next get an initial estimate of the mean µ0 ≡ µs,e and

compute the standard deviation σs,e using Equations 4.2, 4.3 and 4.4. At this stage, we are

treating all values to the left of s and to the right of e as being clipped in our calculation

of the standard deviation. We will progressively try unclipping them, in order of how close

they are to µ0, so that we handle the least extreme values first. If the corresponding new
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standard deviation (which will either be σs,e+1 if we’re unclipping a value from the right, or

σs−1,e if we’re unclipping a value from the left) is not more than a fraction I bigger than the

previous standard deviation σs,e, then we permanently unclip that value and decrease s by

one (if the value was to the left) or increase e by one (if the value was to the right). However,

if this allowed fraction I to increase the standard deviation is exceeded, we will no longer

attempt to unclip values any more from the corresponding side. Eventually the algorithm will

end, either because both sides have had a value which, when unclipping, exceeds the allowed

standard deviation increase, or because the ends s = 0 and e = m− 1 are reached. We now

return our original vector v, except that values less than us are set to us, and values greater

than ue are set to ue, where here s and e are the final values of these variables (which indicate

where the last unclipping occurred). The details of this algorithm are shown as Algorithm 5,

and Python code for the algorithm is given in Section 4.11. This implementation has running

time on the order of m log(m) since it relies on sorting all of the values.

4.9 Differences Between MAD Removal and Impact

Clipping

The Impact Clipping algorithm is designed to behave very differently than MAD Removal

in the limit as the number of values goes to infinity. Since MAD Removal is premised on the

idea that we should have a certain underlying distribution for the data, but that the values

may be corrupted for some reason, it makes sense to remove bad seeming data even when the

number of values is very large. But Impact Clipping makes no such assumption. In its case,

our concern is with not letting any single value impact the standard deviation too much. But

as the number of values grows, each individual one has less effect on the standard deviation,

so we become increasingly willing to leave values unclipped. Therefore, unlike MAD Removal,
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Algorithm 5 Impact Clipping

1: Create a zero-indexed copy of the vector v, called u, and sort the values of u in ascending

order.

2: Select the middle τ values of u (which will be left unclipped), where τ is set to F m after

rounding it down to the nearest integer, or to the integer beneath that one, whichever

leaves τ with at least one element and puts an equal number of values to the left of τ as

to the right of τ .

3: Define two integers, the start value s = (m − τ)/2 and end value e = (m + τ)/2 − 1,

which are the left most and right most of the middle τ values.

4: Save our original mean estimate µ0 = µs,e using Equation 4.2.

5: Set continueLeft = True and continueRight = True, which signify that we have not

yet stopped trying to add back into our standard deviation calculation the values to the

left of s and to the right of e respectively.

6: If s = 0 then set continueLeft = False, and if e = m−1 then set continueRight = False,

indicating that there are no more values left to try in the corresponding direction (i.e. to

the left of s or to the right of e).

7: If continueLeft = False and continueRight = False then finish and return a copy of v

with every value less than us set to us, and every value greater than ue set to ue.

8: If continueLeft = True and (continueRight = False or |us−1 − µ0| ≤ |ue+1 − µ0|), then:

9: Efficiently calculate µs−1,e and µsqs−1,e and σ2
s−1,e using Eq. 4.5, 4.6 and 4.4.

10: If σs−1,e/σs,e − 1 > I, then set continueLeft = False

11: Otherwise: set s→ s− 1

12: Otherwise:

13: Efficiently calculate µs,e+1 and µsqs,e+1 and σ2
s,e+1 using Eq. 4.7, 4.8 and 4.4.

14: If σs,e+1/σs,e − 1 > I, then set continueRight = False

15: Otherwise: set e→ e+ 1

16: Return to Step 6.
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Impact Clipping is asymptotically unbiased.

Another substantial difference between Impact Clipping and MAD Removal is that, in

the former, we clip values without removing them, whereas in the latter we remove values

completely. The reason for the difference is that, in the former case, we have no particular

reason to believe that data is corrupted or invalid, since we know nothing about our data’s

underlying distribution. We simply want to protect ourselves from extreme values that might

excessively distort our statistics. Clipping is a way to protect ourselves while introducing

less bias than would occur with outlier removal. On the other hand, for MAD Removal, a

value that is way outside what is expected from our assumed theoretical distribution can

reasonably be said to be a corrupt or erroneous value, and so removing it makes sense, and is

not expected to introduce significant bias.

4.10 Conclusion

We have introduced two methods for handling outliers in data. The first, MAD Removal

is appropriate when the data should have been generated by a known distribution, but may

have been corrupted or contain errors. The second, Impact Clipping, is appropriate when the

underlying distribution is unknown, and we are concerned with limiting the impact that any

one value in our data can have on statistics of interest, such as the standard deviation.
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4.11 Python Code

import math

import numpy as np

def MAD_Removal(values, mode="remove outliers", normalFractionAffected=".001"):

"""Clips (i.e. Winsorizes) or removes potential outliers from values (a list

or 1d numpy array of real numbers). Identifies a lower and upper cutoff such

that if the elements of values are independent and normally distributed

then on average only about a fraction normalFractionAffected of elements

will not lie between the cutoffs. Cutoffs are based on the probability of

normal values being that many median absolute deviations (i.e. MADs) away

from the median, given the length of values.

Elements not within cutoffs are clipped or removed based on mode setting.

If mode=’clip outliers’ then winsorize by setting values below lower cutoff

to lower cutoff, and values above the upper cutoff to the upper cutoff.

If mode=’remove outliers’ then values not falling between lower and upper

cutoff will be removed completely from the returned copy of values.

normalFractionAffected must be one of these text strings:

’.0001’, ’.001’, ’.01’

Never modifies values, always returns a copy.

"""

values = np.array(np.copy(values)).flatten() #copy as 1d flat numpy array

if len(values) <= 3: return values #don’t modify if less than 4 values

median = np.median(values)
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mad = np.median(np.abs(values - median)) #the median absolute deviation

if mad <= 1E-16: return values #if middle 50% all the same, just return

#allowed distance from median is sample size dependent multiple of MAD

cutoff = madAdjustment(len(values), normalFractionAffected)

boundary = mad * cutoff

if mode == "clip outliers": #set large and small values to the cutoffs

values[values>median + boundary] = median + boundary #clip big values

values[values<median - boundary] = median - boundary #clip small values

return values

elif mode == "remove outliers": #completely remove large and small values

#keep only values within boundary of median

return values[np.abs((values-median)/float(boundary)) <= 1]

else:

raise ValueError("mode must be ’clip outliers’ or ’remove outliers’")

def madAdjustment(sampleSize, normalFractionAffected):

"""gives the number of MADs from the median to achieve only a fraction

normalFractionAffected outside of median +- cutoff*mad when the data

really does come from a normal distribution."""

m = sampleSize

even = (m % 2 == 0) #true if and only if sampleSize is even

#standardize the format of normalFractionAffected as a string

normalFractionAffected = str(normalFractionAffected).lstrip("0").rstrip("0")

if normalFractionAffected == ".0001":

asymptoticMultipier = 5.7682 #=InverseErf[1-.0001]/InverseErf[0.5]

#handle even and odd cases separately, using numerically fit parameters

if even: r = correction(m, a=0.670852, b=0.160374, c=1.87124, d=1.52869)

else: r = correction(m, a=1.06162, b=0.275104, c=2.17383, d=1.5079)

elif normalFractionAffected == ".001":

asymptoticMultipier = 4.87854 #=InverseErf[1-.001]/InverseErf[0.5]
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if even: r = correction(m, a=0.858321, b=0.242921, c=1.45477, d=1.36824)

else: r = correction(m, a=1.59485, b=0.468591, c=1.85156, d=1.35865)

elif normalFractionAffected == ".01":

asymptoticMultipier = 3.81893 #=InverseErf[1-.01]/InverseErf[0.5]

if even: r = correction(m, a=1.50225, b=0.538382, c=1.27693, d=1.24351)

else: r = correction(m, a=1.16243, b=0.338736, c=0.894065, d=1.21593)

else:

raise ValueError("normalFractionAffected must be one of these text\

strings: ’.0001’, ’.001’, ’.01’")

return asymptoticMultipier * r

def correction(m, a, b, c, d):

"""the correction to adjust the asymptotic cutoff for sample size m"""

return 1.0 + 1.0/float(b * ((m ** d) / (math.log(m) ** c)) - a)

def impactClipping(values, initialFractionToInclude=0.90, maxStdDevIncrease=0.15):

"""An outlier clipping method that returns a copy of values (in the original

order), where we first compute the variance and mean of the middle

initialFractionToInclude of the values, clipping (i.e. winsorizing) the others

and try unclipping each of the unclipped values one at a time in order of how

close they are to the original clipped mean. If adding one back ever raises

the standard deviation (that we have so far) by more than a maxStdDevIncrease

fraction then we stop unclipping values from that side.

"""
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sortedValues = np.array(np.copy(values)).flatten() #copy as 1d flat array

sortedValues.sort() # sort ascending

m = len(sortedValues)

numToInclude = m*initialFractionToInclude

maxInTheMiddle = int(math.floor(numToInclude)) #rounded down

if maxInTheMiddle <= 2: maxInTheMiddle = 2

#make sure that the number of values to the left and right are the same

if (m % 2 == 0) == (maxInTheMiddle % 2 == 0): numToInclude = maxInTheMiddle

else: numToInclude = max(maxInTheMiddle - 1, 0)

#set so that approximately initialFractionToInclude are in the middle

numberOnEachSide = int(round((m-numToInclude)/2.0))

start = numberOnEachSide #left edge of the middle (i.e. unclipped) values

end = m - numberOnEachSide - 1 #right edge of the middle values

#calculate initial stats clipping values left of start and right of end

mean = (start*sortedValues[start] + np.sum(sortedValues[start:end+1])\

+ (m - end - 1)*sortedValues[end])/float(m)

avgSq = (start*(sortedValues[start]**2)\

+ np.sum(np.power(sortedValues[start:end+1],2))\

+ (m - end - 1)*(sortedValues[end]**2))/float(m)

var = (avgSq - mean**2) * (m/float(m-1))

origMean = mean #used to decide order of adding back clipped values

continueLeft = True #we stop trying values left of start when False

continueRight = True #we stop trying values right of end when False

while True:

if start == 0: continueLeft = False

if end == m - 1: continueRight = False

if (not continueLeft) and (not continueRight): break

newMean = mean

newAvgSq = avgSq

newStart = start

newEnd = end
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#smallest dist. to original clipped mean decides if next is left or right

if continueLeft and ((not continueRight)\

or abs(sortedValues[start-1]-origMean)\

< abs(sortedValues[end+1]-origMean)):

mult = start/float(m)

newMean += mult * (sortedValues[start - 1] - sortedValues[start])

newAvgSq += mult \

* (sortedValues[start - 1]**2 - sortedValues[start]**2)

newStart -= 1

else:

mult = (m - end - 1)/float(m)

newMean += mult * (sortedValues[end+1] - sortedValues[end])

newAvgSq += mult * (sortedValues[end+1]**2 - sortedValues[end]**2)

newEnd += 1

newVar = (newAvgSq - newMean**2) * (m/float(m-1))

#check if the standard deviation increased too much

#change to another statistic if the std dev is not the stat of interest

condition = math.sqrt(newVar/float(var)) - 1.0 > maxStdDevIncrease

if condition:

if newStart == start - 1: continueLeft = False

else: continueRight = False

else: #otherwise, keep the new values for each variable

mean, avgSq, var = newMean, newAvgSq, newVar

start, end = newStart, newEnd

valuesCopy = np.array(np.copy(values)).flatten()

valuesCopy[valuesCopy<sortedValues[start]] = sortedValues[start]

valuesCopy[valuesCopy>sortedValues[end]] = sortedValues[end]

return valuesCopy
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MAD Removal - Fraction of Values Removed (Normal, Uniform, Bimodal)
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Figure 4.1: The average fraction of values that are removed by the MAD Removal algorithm (using a
normal distribution as its underlying theoretical distribution) when applied to a large number of vectors of
varying sizes, where the vector elements are independent and identically distributed and drawn from (1) a
normal distribution, (2) a uniform distribution, and (3) a bimodal distribution (consisting of two normally
distributed bumps of equal standard deviation, with their means 6 standard deviations apart). Each dotted
line corresponds to a different value of p, the fraction of values expected to be removed when the values are
independent and drawn from a normal distribution.

155



MAD Removal - Fraction of Values Removed (Log Normal, Cauchy, Exp)
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Figure 4.2: The average fraction of values that are removed by the MAD Removal algorithm (using a
normal distribution as its underlying theoretical distribution) when applied to a large number of vectors of
varying sizes, where the vector elements are independent and identically distributed and drawn from (1) a
log normal distribution, (2) a Cauchy distribution and (3) the exponential distribution. Each dotted line
corresponds to a different value of p, the fraction of values expected to be removed when the values are
independent and drawn from a normal distribution.
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MAD Removal - Cutoffs Via Simulation Versus Fit To Those Values
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Figure 4.3: This figure shows the empirically determined cutoff values at different sample
sizes m and for difference choices of p. We compare these empirically derived values to the
values of the function cutoff(m) = αpr(m) = αpf(m, a, b, c, d), where a,b,c,d have been fit via
a least squares minimization (as described in Algorithm 3) to match the empirical values.
Note that for a given p there are in fact two sets of parameters a,b,c,d, as one set is used
when m is even, and another is used when m is odd, but for easy viewing in the figure we
choose the appropriate such function for each m to make the plot seamless, as though it is
just one function. As can be seen in the figure, our curve fitting procedure is able to closely
fit the empirical cutoff values. Note that as m gets large these curves asymptote to αp, which
gives 3.82, 4.88, and 5.77 MADs from the median for p equal to 0.01, 0.001, and 0.0001
respectively. Furthermore, note that the cutoffs are decreasing as m increases, meaning that
the larger the sample size, the less lenient our cutoffs are. At m=100 we have a cutoff that is
4.5%, 7.4% and 10.2% higher than the m → ∞ asymptote for p equal to 0.01, 0.001, and
0.0001 respectively
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Differences Between Cutoffs Via Simulation Versus Fit To Those Values

o

o

o
o

oo

o

o

o

o

o

o

oo
oo

o

o
o

o

o

o

o
o

o
o

o
oo
o
o
o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

oo

o

o

o

oo
o

o
o
o

o

oo

oo

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o
o

o

o

o

o
o
o

o

ooo

o

o

o

o
o

o

o
o

oo

o

o
o

o

o

o

o

o
o
o

o

o

x
x

x
x

xx
x

x

x

x
x

x

x

x

x

xxx

x

x

x

x

x

x

x

x

x

x
x

xxx

xx

x

x

x
x
x
x
x

xx

x
x

x
xxx

x
xx
xx
xx
x

x

xxx

x

xx

x

xx
x
x

x

x

x
x

x

x

xx

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

xx

x

x

x
xx

x

x

++

++

+

++

+

+

+

+

++

+

+

+
+

++

+
+

+

+

+

+

+
+

++
+
++

+

+

+
+++

+
+++

++++

+

+

+

++
+
+
+

+
+

+
++

+++
+

+

+
+

+

+

+

++

+

+

+

+

++

+

+

++

+++

+

++
+

+

+
+
+
+

+

+
+++

+

+

+

+
+
+

+

+

+

+
+
+

+

++
+

+

+

+

0 20 40 60 80 100 120 m

10-5

10-4

0.001

0.010

0.100

1

|Fit Cutoff - Simulated Cutoff|

o p=0.0001

x p=0.001

+ p=0.01

Figure 4.4: This logarithmic plot shows the same information as Figure 4.3, but now we
have taken the the absolute value of the differences between the empirically determined
cutoff values and the fit values cutoff(m) = αpr(m), rather than looking at the raw (i.e.
non-difference) values. As can be seen in the chart, the fit overshoots the empirical values
slightly, but the difference is so small as to have no practical significance.
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Impact Clipping - Fraction of Values Clipped (Normal, Uniform, Bimodal)

Figure 4.5: The average fraction of values that are clipped by the Impact Clipping algorithm when applied
to a large number of vectors of varying sizes, where the vector elements are independent and identically
distributed and drawn from (1) a normal distribution, (2) a uniform distribution, and (3) a bimodal distribution
(consisting of two normally distributed bumps of equal standard deviation, with their means 6 standard
deviations apart). Each dotted line corresponds to a different value of I, the fraction by which the standard
deviation is allowed to increase in order for us to be willing to unclip a previously clipped value.
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Impact Clipping - Fraction of Values Clipped (Log Normal, Cauchy,
Exponential)

Figure 4.6: The average fraction of values that are clipped by the Impact Clipping algorithm when applied
to a large number of vectors of varying sizes, where the vector elements are independent and identically
distributed and drawn from (1) a log normal distribution, (2) a cauchy distribution, and (3) an exponential
distribution. Each dotted line corresponds to a different value of I, the fraction by which the standard
deviation is allowed to increase in order for us to be willing to unclip a previously clipped value.
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A Bimodal Distribution Where the Mean and Median Are Far Apart
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Figure 4.7: The dashed blue line shows the median of this bimodal distribution, and the solid
red line shows the median. Since the bump on the left contains 52% of the probability, the
median lies within the left bump, whereas the mean is nearly equidistant between the two
bumps.
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Chapter 5

Generalized Regularization for Least

Squares Regression

We have already examined one generalization of Ridge Regression in Chapter 3, in the

context of handling outliers. Here we generalize Ridge Regression in a different direction by

modifying its regularization penalty. It is well known that by switching from the L2 penalty

of Ridge Regression, to the L1 penalty of Lasso Regression, we can learn sparse solutions.

And as we saw in Chapter 1, on some prediction problems this tendency towards sparsity

allows Lasso Regression to significantly outperform Ridge Regression, such as when the labels

were generated from a linear model that only used a few of the features. That raises an

intriguing question: what do other sorts of regularization terms do to our solution? And

when would we want a regularization penalty that is neither that of Ridge Regression nor

that of Lasso Regression?

In this chapter, we replace the standard L2 regularization of Ridge Regression with an

arbitrary positive definite quadratic form. This leads to an optimization problem that is

substantially more general that Ridge Regression, but that is still analytically solvable,
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making possible the closed form analysis of the generalization ability of such an algorithm

when trained on a linear problem. The conclusion from such an analysis is that the best

regularization is one chosen for the prediction problem at hand. In other words, regularization

is a way to encapsulate prior knowledge about our problem. In this way, generalizing the

regularization penalty provides us with a tool for tackling some of the ways that we saw

Ridge Regression perform sub-optimally on empirical cases in Chapter 1. The more prior

information we build into our model, the better we will perform, and generalized regularization

can be a convenient means to do so.

We also discuss in this chapter the case of regularization that depends on the data it-

self, and give examples of how that can be used to change the algorithm’s behavior. Many

common approaches to analyzing the generalization ability of machine learning algorithms

fail if the regularization is data dependent. In Chapter 9 however, we will develop a learning

bound that permits this sort of data dependency.

We will now discuss our approach for generalizing the regularization of Ridge Regression and

(by extension) Ordinary Least Squares.

5.1 Introduction

To prevent overfitting in Ordinary Least Squares regression, and to improve performance

in the presence of co-linearity of features, it is common to introduce an L2 penalty on the

solution coefficients. This results in the Ridge Regression algorithm, which has as its vector
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of feature coefficients the solution to the following optimization problem:

wλ ≡ argmin
w∈Rn

m∑
i=1

(wᵀX i − yi)2 + λ||w||22. (5.1)

Here X is an n×m matrix of training data with one data point X i per column and one feature

Xj per row. We use the m×1 column vector y to represent the labels of our training set, with

one label yi corresponding to each point X i in X. The parameter λ > 0 is the complexity

parameter for Ridge Regression which determines the strength of regularization, and therefore

how much the solution coefficients should be pushed towards 0. Hence, we can think of Ridge

Regression as using a one parameter family λ||w||22 of regularization norms, one norm for each

λ > 0. In real world implementations, Ridge Regression generally uses data dependent regular-

ization, since λ is generally chosen using the data (e.g. using k-fold cross-validation). This is a

minimal data dependency however, as the training data is used only to select this one constant.

In this chapter we consider what happens when we generalize this regularization 2-norm to a

much broader class of norms, replacing the penalty term λ||w||22 with (w−b)ᵀΛ(w−b) instead,

and allowing this regularization to depend in significant ways on the training data. Here Λ

is a real-valued positive semi-definite matrix which we will refer to as the “regularization

matrix” or when useful for clarity, the “feature regularization matrix”, since this matrix

determines how features are treated. The real valued vector b (the “bias” vector) biases

w by pushing our solution coefficients to be more b-like. The restriction that Λ is positive

definite guarantees that (w − b)ᵀΛ(w − b) has the finite minimum w = b. This proposed

change of norm leads to what we call in this chapter “Generalized Ridge Regression”, which

we contrast with “Ridge Regression” (referring to the standard Ridge Regression algorithm).

This particular approach to generalizing Ridge Regression, where we let the regularization be
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a quadratic form that may depend on the training data, is appealing because:

1. It allows for more flexible inclusion of prior information than Ridge Regression.

2. It encompasses a wide range of different algorithmic behaviors, including those that

mimic feature selection, feature extraction, outlier removal, and principal component

analysis.

3. It is usable with kernels for non-linear predictions.

4. It still has a simple analytic solution that is easy to compute.

This contrasts with most other ways to modify the Ridge Regression objective function, such

as Lasso Regression, where no simple analytic solution exists.

We will investigate a number of questions that arise from our choice of generalized reg-

ularization. We first discuss the relationship between prior information and regularization,

and proceed to introduce the optimization problem that our regularization generalization

corresponds to. We also discuss how generalization error in ideal linear cases relates to the

choice of our regularization parameters. Then, we investigate how kernels can be used in

this context, and how changing the regularization term relates to modifying the kernel. We

also introduce some one parameter families of regularization matrices which can serve as an

alternative to the one parameter family used in Ridge Regression. We expect these forms to

lead to superior prediction performance for some classes of problems, as they encode different

prior information and make different assumptions than Ridge Regression. Additionally, we

explore how a regularization matrix can perform behaviors that are similar to feature selec-

tion, feature extraction and principal component analysis, and discuss how Ridge Regression

behaves in the context of repeated features.
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Note that in a number of sections of this chapter we use weights vi for each training

point (X i, yi), with
∑m

i=1 vi = m, and we sometimes write this collection of weights as the

diagonal elements of a diagonal weight matrix V . These weights allow us to count different

data points different amounts, not unlike how a diagonal Λ matrix lets us count different

features different amounts.

5.2 Regularization and Prior Information

One way to view the penalty term in standard Ridge Regression is as a prior that is being

imposed on the prediction problem, where we assume that each coefficient is more likely to

be small than to be large. The free parameter λ is then learned (for instance using k-fold

cross-validation) as a way of setting an appropriate strength for this prior. When the Ridge

Regression penalty is generalized to include a regularization matrix Λ, this can viewed as

encompassing a much wider range of possible priors.

A simple interpretation of the Λ matrix can be seen when we write:

(w − b)ᵀΛ(w − b) =
n∑
i=1

n∑
j=1

Λj
i (wi − bi)(wj − bj)

=
∑

1≤i≤n

Λi
i(wi − bi)2 + 2

∑
1≤i≤n

∑
1≤j<i

Λj
i (wi − bi)(wj − bj).

Here it is apparent that if Λ does not depend on the data, then it encodes prior information

about how large we expect each (wi − bi)2 and each (wi − bi)(wj − bj) to be. While Λ = λI

with b = 0 penalizes all features equally, and while diagonal Λ with b = 0 gives each feature its

own penalty, a full positive definite matrix for Λ also assigns each cross term (wi− bi)(wj− bj)

its own penalty Λj
i . Hence, it can capture the possibility that some coefficients wi are more
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or less likely to be large (or far from bi when bi 6= 0) when other coefficients wj are large (or

far from bj when bj 6= 0). This could be used, for instance, in image prediction problems

where each feature corresponds to a pixel, where we use b = 0 and we set the off diagonal

element Λj
i to be negative when i and j are nearby pixels to encode the prior knowledge that

coefficients for nearby pixels should be correlated (while taking care to ensure that Λ is still

positive definite).

5.2.1 Bayesian Interpretation of Λ

From a Bayesian perspective, we can think of Λ as switching from an isotropic gaussian

prior (where the center is at the 0 vector, and the covariance matrix is a multiple of the

identity matrix) to a general gaussian with arbitrary center and covariance matrix. Hence,

our generalized form of regularization allows us to encode more complex prior knowledge

about what sort of coefficients we expect.

To see this in detail, consider the case where our data is truly drawn from a linear model with

additive gaussian noise, where each training point is drawn independently from the others.

Then the label yi for point X i is given by:

yi =ᵀ X iᵀw∗ + ε

where ε is a gaussian random variable with mean equal to the zero vector, and standard

deviation σ. Suppose further that the prior probability we assign to solution coefficient vector

w is given by the multivariate normal probability density function

P (w) ≡ 1√
(2π)n|Ψ|

e
−1
2

(w−b)ᵀΨ−1(w−b).
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Then, applying Bayes’ rule, the posterior probability P (w | Z) of a given solution coefficient

w, once we have observed our training data Z ≡ (X, y), is given by:

P (w | Z) =
P (w)P (Z | w)

P (Z)
∝ P (w)

n∏
i=1

P (Zi | w).

∝ e
−1
2

(w−b)ᵀΨ−1(w−b)
n∏
i=1

e−
(wᵀXi−yi)

2

2σ2 .

= e
−1
2

(w−b)ᵀΨ−1(w−b)−
∑m
i=1

(wᵀXi−yi)
2

2σ2 .

= e
−1

2σ2
((w−b)ᵀσ2Ψ−1(w−b)+

∑m
i=1(wᵀXi−yi)2).

Now, since e
−1

2σ2
x is a monotonic decreasing function of x, we maximize P (w | Z) by solving

min
w

m∑
i=1

(wᵀX i − yi)2 + (w − b)ᵀΛ(w − b),

where Λ ≡ σ2Ψ−1. Hence, we see that in this case b reflects the coefficient vector w that we

think is a priori most likely. On the other hand, Λ reflects both the anticipated level of label

noise (via the constant σ), and the ellipsoid describing how a priori likely are all possible

values of w (via the precision matrix Ψ−1).

As an example where prior information is readily available, suppose that we have solved many

very similar regression problems to the one we are interested in now, and view the current

problem as having been drawn as a random sample from the set of all of these problems.

Then, we can use the average solution coefficients of the previous problems for b, and use

the distribution of the solution coefficients in these previous problems to estimate Λ. In that
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case, b has the simple interpretation of being the mean solution coefficient vector, and Λ

encodes how much deviation from this best guess we can expect (and in what directions this

deviation is more and less likely).

Of course in general there is no universally “right” prior. The appropriate prior to use

depends on the pre-existing information that we have about the prediction problem, so

different problems will best be solved using different priors. Therefore we should expect that

the standard Ridge Regression regularization norm (corresponding to Λ = λI, b = 0) will

sometimes be an excellent choice, but in other instances we will be much better served by

choosing a different Λ and b.

In some cases, the most useful choices for Λ will not be “priors” at all, but rather, will depend

on the training data. Introducing a data dependent regularization matrix Λ and bias vector b

can cause a wide range of interesting behaviors. As we will see, some such data driven choices

of Λ can even behave similarly to other algorithms that are usually performed separately

from the regression, such as feature selection, feature extraction, and principal component

analysis. To explore data dependent regularization, and to gain a deeper understanding of

this generalized form of regularization in general, we begin by investigating the Generalized

Ridge Regression solution.

5.3 The Generalized Ridge Regression Optimization

Problem

The following lemma introduces our Generalized Ridge Regression optimization problem,

which includes the feature regularization matrix Λ, the bias vector b, and the diagonal point
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weight matrix V . We will assume throughout this chapter that the feature matrix X has had

a column of all 1’s appended. This feature plays the role of a constant term in our linear

prediction function, allowing us to treat the constant term just like any other feature.

Lemma 3. The unique solution to the Generalized Ridge Regression problem

argmin
w∈Rn

m∑
i=1

vi(w
ᵀX i − yi)2 + (w − b)ᵀΛ(w − b).

for a real-valued positive definite symmetric regularization matrix Λ is

wΛ = (XVXᵀ + Λ)−1(XV y + Λb).

Proof. It is easily seen than setting the derivative

d

dw

( m∑
i=1

vi(w
ᵀX i − yi)2 + (w − b)ᵀΛ(w − b)

)

equal to zero yields the result above. Since by construction XV ᵀX is positive semi-definite

and Λ is positive definite, the matrix (XVXᵀ +Λ) is positive definite, so its inverse exists.

We note that lim||Λ||→∞wΛ = b. This reflects a prior that locates all of the probability for

the solution coefficients precisely at the vector b. As ||Λ|| grows, the probability is increasingly

concentrated around b.

5.4 Generalization Error of Generalized Ridge Regres-

sion

Previously, we explored how the maximum likelihood solution relates to the bias vector b

and regularization matrix Λ. But generally it is not the maximum likelihood solution that

170



we care about per se, but rather, achieving a low generalization error. We now investigate

the generalization error (i.e. the average prediction error on new data) under the same

assumptions that we used before, namely, that our data is generated by a linear model

with additive gaussian noise, and that our features were drawn from a multivariate gaussian

distribution.

This setup will allow us to study the way that Λ and b impact the generalization error in this

context, but also will give us intuition about the role that Λ and b play in general. There

is no need in this case to introduce a prior distribution over the solution coefficients as we

did previously, since our model is already determined. Recall that our Generalized Ridge

Regression solution coefficients are given by w = R(XV y + Λb), where R ≡ (XVXᵀ + Λ)−1.

Our first theorem on this topic expresses the generalization error, G, in terms of Λ (the

regularization matrix), b (the bias vector), ~ε (the vector of additive noise that has corrupted

the vector of labels), w∗ (the true solution coefficients that generated our data), C (the true

covariance matrix of the features) and µ (the true mean of the features).

Theorem 5. The generalization error of Generalized Ridge Regression, when trained on X

and y that are generated from a linear model y = Xᵀw∗ + ~ε with ~ε ∼ Norm(0, σ2I) and

X ∼ Norm(µ,C), is given by:

G = ||ARXV~ε+ ARΛ(b− w∗)||2 + σ2

where A ≡
√
C + µµᵀ and ||.|| represents the 2-norm of a vector.

The theorem illustrates what impacts the generalization error. First, we see that it helps

to have σ, the additive label noise, be very small. When that happens ||~ε|| will tend to be

relatively small as well, so the main contributor to the error will be ARΛ(b − w∗) which

essentially measures the bias introduced by Λ and b. As ||Λ|| → 0 (corresponding to having

less and less regularization) or b→ w∗ (corresponding to our guess for w∗ being increasingly
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perfect) this bias term disappears as well. So zero generalization error occurs in the limit as

the label noise variance goes to zero, and either ||Λ|| → 0 or b→ w∗. If the underlying model

generating the data were non-linear, additional bias would still remain caused by the optimal

linear model differing that the true model.

The other term inside the norm, which is ARXV~ε, is precisely A times the Generalized Ridge

Regression solution coefficients (with b = 0) that we would have gotten had we trained our

model on the noise vector ~ε (instead of on the labels y). So that term is small when the

regression model would have been able to accurately learn (when trained on labels consisting

of pure mean 0 noise) that the appropriate solution coefficients is something close to the zero

vector. In a sense, this is a measure of the algorithms propensity to overfit the training data,

with more overfitting tending to result in a larger vector RXV~ε. Of course when the label

noise level is high (i.e. ||~ε|| is large) it becomes harder for the algorithm to determine that

the coefficients should be close to zero, and hence the generalization error due to this term

will tend to be larger.

As ||Λ|| increases, we see a tradeoff between the term ARXV~ε, which tends to shrink in mag-

nitude, and the term ARΛ(b− w∗), which tends to grow in magnitude. Hence, ||Λ|| controls

the tradeoff between variance and bias, which is reflected in these two terms, respectively.

While the magnitude ||~ε|| is dependent on σ, the direction that the vector ~ε points is purely

due to chance in this model, and is equally likely to point in any direction. If we get lucky,

then ARXV ~ε
||~ε|| will be small, and if we get unlucky it will be large. On the other hand,

unlike the vector ~ε, we may have some a priori sense of the direction that b− w∗ may point.

When that is the case, we can choose Λ to encapsulate that information, which will make

Λ(b− w∗) small, and tend to improve the generalization error. This reinforces the previous

bayesian interpretation of Λ. Even in this non-bayesian context, Λ and b are encapsulating

prior information about what w∗ might be, and if we select them well the generalization error

will tend to improve.
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The proof of the theorem follows.

Theorem 5. We will make use of Corollary 4 from the chapter notes, which says that for a

vector x0 ∼ Norm(µ,C), we have Ex0 (xᵀ0v)2 = ||
√
C + µµᵀ v||2.

We proceed to analyze the generalization error, G of our Generalized Ridge Regression

solution. For x0 ∼ Norm(µ,C) and y0 = xᵀ0w
∗ + ε with ε ∼ Norm(0, σ) we can write:

G ≡ Ex0,y0 (xᵀ0w − y0)2 = Ex0,ε (xᵀ0w − x
ᵀ
0w
∗ − ε)2 = Ex0,ε (xᵀ0(w − w∗)− ε)2

= Ex0 (xᵀ0(w − w∗))2 + Eε ε
2 − 2Ex0,ε[ε x

ᵀ
0(w − w∗)]

= Ex0 (xᵀ0(w − w∗))2 + σ2 = ||
√
C + µµᵀ (w − w∗)||2 + σ2

= ||A (R(XV y + Λb)− w∗) ||2 + σ2

= ||A (R(XV (Xᵀw∗ + ~ε) + Λb)− w∗) ||2 + σ2

= ||AR
(
(XVXᵀ −R−1)w∗ +XV~ε+ Λb

)
||2 + σ2

= ||AR (−Λw∗ +XV~ε+ Λb) ||2 + σ2

= ||ARXV~ε+ ARΛ(b− w∗)||2 + σ2

Since the vector ~ε is random with ~ε ∼ Norm(0, σ2I), we can also consider the expected

value of the generalization error (with respect to ~ε), to see how the average generalization

error varies with respect to b, Λ and σ. We do so in the following corollary.

Corollary 2. The average generalization error of Generalized Ridge Regression, when trained

on X and y that are generated from a linear model y = Xᵀw∗ + ~ε with ~ε ∼ Norm(0, σ2I)
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and X ∼ Norm(µ,C), is given by:

E~ε G = σ2||ARXV ||2Frob + ||ARΛ(b− w∗)||2 + σ2

where A ≡
√
C + µµᵀ, R ≡ (XVXᵀ + Λ)−1, ||.||Frob represents the Frobenius norm of a

matrix, and ||.|| the 2-norm of a vector.

Proof. By applying the preceding theorem, and Corollary 3 from the chapter notes to produce

the trace, we have:

E~ε G = E~ε ||ARXV~ε+ ARΛ(b− w∗)||2 + σ2

= E~ε ||ARXV~ε||2 + ||ARΛ(b− w∗)||2 + E~ε 2~εᵀV ᵀXᵀRᵀAᵀARΛ(b− w∗) + σ2

= E~ε ||ARXV~ε||2 + ||ARΛ(b− w∗)||2 + σ2

= E~ε ~ε
ᵀV ᵀXᵀRᵀAᵀARXV~ε+ ||ARΛ(b− w∗)||2 + σ2

= σ2Tr[V ᵀXᵀRᵀAᵀARXV ] + ||ARΛ(b− w∗)||2 + σ2

= σ2Tr[ARXV V ᵀXᵀRᵀAᵀ] + ||ARΛ(b− w∗)||2 + σ2

= σ2||ARXV ||2Frob + ||ARΛ(b− w∗)||2 + σ2.

This formula for the average generalization error has a very clean interpretation. The first

term, σ2||ARXV ||2Frob, is the generalization error that is attributable to the label noise in

the training data. In this case, the label noise (whether in the training set or testing set) has

standard deviation σ. As σ goes to 0 this first term disappears, as expected, because then the

training data has no label noise. What’s more, as ||Λ|| gets large, R tends to shrink, causing

this term to shrink. Hence, ||Λ|| can be interpreted as the magnitude of regularization, and as
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this magnitude grows, the generalization becomes less impacted by label noise in the training

data. However, even for ||Λ|| fixed, the exact choice of Λ is going to influence the size of

this term. Hence, the generalization error can be made smaller by selecting a Λ that reduces

||
√
C + µµᵀ(XVXᵀ + Λ)−1XV ||Frob, which means that, in an ideal situation, we would want

Λ to depend on X as well as the true feature mean µ and true feature covariance matrix C.

This provides a glimpse of why we may want Λ to depend both on our training and our prior

knowledge simultaneously, suggesting the possibility of using data driven choices for Λ and b.

The second term, ||ARΛ(b − w∗)||2, is the generalization error attributable to bias in our

model. This is the only term that b, our “bias vector” impacts. If b is perfect and equals

the true solution coefficients w∗ then this term disappears, as it also does if ||Λ|| → 0 (but

typically at the cost of increasing the first term). So Λ and b both contribute bias, and either

one can (at least theoretically) be chosen so that there is no contribution from this term. The

term can hence be made smaller by a judicious choice of b and Λ, which might incorporate

prior knowledge about w∗, as well as information about X, C and µ which all appear in this

term. As ||Λ|| grows larger, this term tends to grow, while the first term simultaneously

shrinks, reflecting the tradeoff between bias and variance.

The third and final term, σ2, is the simplest, and reflects the out of sample label noise.

There is nothing that can be done to remove this source of error, other than collecting data in

a manner that adds as little extra noise as possible (e.g. using the most accurate measurement

tools available).

Recall that typically in linear regression settings the choice b = 0 is used, such as is

done for Ridge Regression. But when will an alternative choice for b outperform the choice

of 0? Is there something special about b = 0 that makes it preferable? These questions can
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be addressed by comparing the generalization error when 0 is chosen versus when b takes

its general form. We will have a lower generalization error for a non-zero b occurs precisely

when:

σ2||ARXV ||2Frob + ||ARΛ(b− w∗)||2 + σ2 < σ2||ARXV ||2Frob + ||ARΛw∗||2 + σ2.

We see that this happens when

||ARΛ(b− w∗)||2 < ||ARΛw∗||2

or equivalently, when

(b− w∗)ᵀQ(b− w∗) < w∗ᵀQw∗

where Q ≡ ΛᵀRᵀAᵀARΛ. Hence, we see that b = 0 is not necessarily a good choice, and

in particular we want to choose b to make b − w∗ small, which b = 0 will only do if w∗ is

already small. However, the notion of “smallness” here is not a simple 2-norm, but rather it

is smallness as measured by the norm induced by the matrix Q. Sometimes b = 0 will be an

excellent choice, for instance, when it is likely that most solution coefficients are small, but if

we have a way of guessing w∗, or estimating it from extra data, we may be much better off

using this guess for b.

5.5 Kernelizing the Optimization Problem

The Generalized Ridge Regression optimization problem from Lemma 3 can be generalized

further if we allow for the possibility that the points X i may each be transformed by some

feature map φ before using them for learning (introducing a kernelized form of the algorithm).
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This produces a kernel Generalized Ridge Regression optimization problem:

wφ ≡ argmin
w∈Rn

m∑
i=1

vi(w
ᵀφ(X i)− yi)2 + (w − b)ᵀΛ(w − b).

We define the kernel function κ which measures the similarity between any pair of points

x1 and x2:

κ(x1, x2) ≡ φ(x1)ᵀφ(x2)

and the m×m kernel matrix K whose ith, jth entry Kj
i represents the similarity between

points i and j of X:

K ≡ [κ(X i, Xj)]mi,j=1.

Finally, we define Φ ≡ φ(X) to be the n×m matrix [φ(X i)]mi=1 constructed from applying φ

to each point (i.e. column) of X, and note that then K = ΦᵀΦ.

Lemma 4. The unique solution to the kernel Generalized Ridge Regression problem

argmin
w∈Rn

m∑
i=1

vi(w
ᵀφ(X i)− yi)2 + (w − b)ᵀΛ(w − b).

is given by

wφ =
(
ΦV Φᵀ + Λ

)−1
(ΦV y + Λb).

Proof. This follows immediately from Lemma 3 and the definition of Φ.
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5.5.1 Point Regularization Matrix

Now we introduce some lemmas which will allow us to rewrite this expression in a form

that converts dot products into kernel point similarity measurements, enabling us to finish

kernelizing the algorithm. Basically, we want to replace our “feature regularization matrix”

Λ with a “point regularization matrix” Ω that has the same effect when applied to the point

similarity matrix ΦᵀΦ that Λ does when applied to the feature similarity matrix ΦΦᵀ. In

essence, the following lemma tells us that we can pass Φ through the inverse that shows up

in the analytic solution for Generalized Ridge Regression, but doing so replaces the feature

regularization matrix Λ with the point regularization matrix Ω.

Theorem 6. For any real matrices Φ, Λ and Ω, the following relationship holds

(
ΦΦᵀ + Λ

)+
Φ = Φ

(
ΦᵀΦ + Ω

)+

whenever the equation

ΛΦ = ΦΩ

is satisfied. Furthermore, when ΦΦᵀ is invertible, the only Λ that satisfies this equation is

Λ = ΦΩΦ+

and when ΦᵀΦ is invertible, the only Ω that satisfies this equation is

Ω = Φ+ΛΦ.

Proof. The relationship

ΛΦ = ΦΩ
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is equivalent to

(ΦΦᵀ + Λ)Φ = Φ(ΦᵀΦ + Ω)

which implies that

Φ = (ΦΦᵀ + Λ)+Φ(ΦᵀΦ + Ω)

which finally implies

Φ(ΦᵀΦ + Ω)+ = (ΦΦᵀ + Λ)+Φ

as desired.

Now, in the case where ΦΦᵀ is invertible, we have that

ΛΦ = ΦΩ

implies

ΛΦΦᵀ = ΦΩΦᵀ

which is equivalent to

Λ = ΦΩΦᵀ(ΦΦᵀ)−1 = ΦΩΦ+.

On the other hand, when ΦᵀΦ is invertible, we have that

ΛΦ = ΦΩ

implies

ΦᵀΛΦ = ΦᵀΦΩ
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which is equivalent to

Ω = (ΦᵀΦ)−1ΦᵀΛΦ = Φ+ΛΦ.

This completes the proof.

It is important to note that if we are given Λ and simply need to pick an Ω, and are not

picky about which Ω we get, we can use:

Ω = Φ+ΛΦ.

In the case where ΦᵀΦ is invertible this will be a unique choice, but more generally it will

not as adding a matrix M to Ω that is in the null space of Φ will preserve the property that

ΛΦ = ΦΩ, since then Φ(Ω +M) = ΦΩ .

We note that Ω is not always positive definite, or even symmetric, despite the fact that Λ is

positive definite by assumption. For instance, consider this case:

Φ =

 1 2

0 1



Φ+ = Φ−1 =

 1 −2

0 1



Λ =

 2 0

0 1
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Ω =

 2 2

0 1

 6= Ωᵀ.

It is also interesting to note that in the special case of Ridge Regression (where Λ = λI),

if we assume that ΦΦᵀ is invertible, we obtain the positive definite matrix:

Ω = Φ+ΛΦ = λΦ+Φ = λΦᵀ(ΦΦᵀ)−1Φ.

as one of our solutions. This result may be surprising as we might expect to get Ω = λIm,

where Im is the m×m identity matrix, as it is well known from the process of kernelizing

Ridge Regression that

(ΦΦᵀ + λIn)−1Φ = Φ(ΦᵀΦ + λIm)−1.

But we recall that Ω does not have a unique solution, and Ω = Φ+ΛΦ is simply a useful and

general purpose choice. As noted previously, if we start with a valid Ω we can add to it any

matrix that is in the null space of Φ and still have a valid Ω. In this case, we observe that

the matrix λ(Im − Φᵀ(ΦΦᵀ)−1Φ) is zero when left multiplied by Φ as required, and adding it

to Ω = λΦᵀ(ΦΦᵀ)−1Φ gives λIm.

5.5.2 Representer theorem form

We now complete our kernelizing process by showing that we can write our predictions in

a form that explicitly depends on the similarity (as measured by our kernel function) between

each point X i and the point x that we are predicting the label of. This is the form given by
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the representer theorem (Schlkopf et al., 2001).

Theorem 7. Whenever the matrix ΦΦᵀ is invertible, the solution to the kernel Generalized

Ridge Regression optimization problem

wφ ≡ argmin
w∈Rn

m∑
i=1

(wᵀφ(X i)− yi)2 + wᵀΛw

defines a linear function l(x) ≡ wᵀ
φφ(x) which can be written

l(x) =
m∑
i=1

αi κ(x,X i)

for kernel similarity function κ(x1, x2) ≡ φ(x1)ᵀφ(x2), α ≡
(
K + Ω

)−1
y, and Ω as defined in

Lemma 6.

Proof. Using Lemma 4 and the fact that Λ = ΦΩΦ+, followed by Lemma 6, followed by the

definition of the kernel matrix K, we have that the Kernel Ridge Regression optimization

problem is solved by the coefficient vector:

wφ =
(
ΦΦᵀ + Λ

)−1
(Φy + Λb)

=
(
ΦΦᵀ + Λ

)−1
(Φy + ΦΩΦ+b)

=
(
ΦΦᵀ + Λ

)+
Φ(y + ΩΦ+b)

=Φ
(
ΦᵀΦ + Ω

)+
(y + ΩΦ+b)

=Φ
(
K + Ω

)+
(y + ΩΦ+b).

Defining the column vector

α ≡
(
K + Ω

)+
(y + ΩΦ+b),
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the prediction that our linear model gives at point x can be written as:

l(x) ≡ φ(x)ᵀwφ =φ(x)ᵀΦ
(
K + Ω

)+
(y + ΩΦ+b)

=([κ(x,X i)]mi=1)ᵀα

=
m∑
i=1

αi κ(x,X i).

Hence we see that whereas Λ is added to ΦΦᵀ to regularize the solution coefficients wφ, in

the kernelized formulation the corresponding Ω = Φ+ΛΦ is added to K = ΦᵀΦ to regularize

the linear point coefficients α. As we have noted, passing from Λ to Ω is possible when ΦΦᵀ is

invertible, which requires at least as many points as features. But in the case where there are

more features than points, we can think of the defining equation of our prediction algorithm

as being l(x) = φ(x)ᵀΦ(K + Ω)+y, without ever actually needing to reference the quantity

wφ = (ΦΦᵀ + Λ)−1(Φy + Λb).

That corresponds to the previously mentioned case where we define Λ in terms of Ω, instead

of the reverse.

We originally named b the bias because the solution coefficients get biased towards b. But

the equation

wφ = Φ
(
K + Ω

)+
(y + ΩΦ+b)

= Φ
(
K + Ω

)+
(y + Φ+ΛΦΦ+b)

= Φ
(
K + Ω

)+
(y + Φ+ΛΦΦᵀ(ΦΦᵀ)−1b)
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= Φ
(
K + Ω

)+
(y + Φ+Λb)

shows that b is a bias in another sense as well. The effect of b is equivalent to simply adding

ΩΦ+b or equivalently of adding Φ+Λb to the vector of labels, y.

5.5.3 Regularization as a Change in Kernel

We now show that generalizing the regularization term ||w||22 to wᵀΛw and adding point

weights vi to our optimization are equivalent to solving the ordinary Ridge Regression problem

except with a certain change to our kernel function and transformation to our labels y. In

other words, changes of the regularization matrix Λ can be thought of as a type of kernel

change.

Theorem 8. The linear function l(x) ≡ wᵀ
φφ(x) that solves the Kernel Ridge Regression

problem with positive definite regularization matrix Λ, feature map φ, and point weights vi,

whose linear coefficients are given by:

wφ ≡ argmin
w∈Rn

m∑
i=1

vi(w
ᵀφ(X i)− yi)2 + wᵀΛw

is identical to the linear function l(x) ≡ wᵀ
ψψ(x) that solves the Kernel Ridge Regression

problem with standard L2 norm based regularization, feature map ψ, and label map η , whose

linear coefficients are given by:

wψ ≡ argmin
w∈Rn

m∑
i=1

(wᵀψ(X i)− η(yi))
2 + ||w||22

where ψ(X i) =
√
vi L

−1φ(X i), LLᵀ = Λ and η(yi) =
√
viyi.

Proof. By assumption, the regularization matrix Λ is positive definite. Hence, there is a
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unique, real, lower triangular matrix L with positive diagonal entries such that

LLᵀ = Λ (5.2)

which is found via the Cholesky decomposition of Λ. Note that if Λ is positive semi-definite

but not positive definite, L will still exist, though it will not be invertible and so will not

work for our purposes.

Now, we perform a change of variables w = (Lᵀ)−1u, writing:

wφ ≡ argmin
w

m∑
i=1

vi(w
ᵀφ(X i)− yi)2 + wᵀΛw

= argmin
w

m∑
i=1

vi(w
ᵀφ(X i)− yi)2 + wᵀLLᵀw

= argmin
w

m∑
i=1

vi(w
ᵀφ(X i)− yi)2 + ||Lᵀw||22

= argmin
u

m∑
i=1

vi
(
((Lᵀ)−1u)ᵀφ(X i)− yi

)2
+ ||Lᵀ(Lᵀ)−1u||22

= argmin
u

m∑
i=1

(uᵀ
√
vi L

−1φ(X i)−
√
vi yi)

2 + ||u||22

= argmin
u

m∑
i=1

(uᵀψ(X i)− η(yi))
2 + ||u||22

So solving the Ridge Regression problem with a full regularization matrix Λ and weights vi

using feature map φ is equivalent to solving the Ridge Regression problem using standard L2

regularization (with λ = 1) under the feature map ψ and label map η.
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5.6 Point Removal

How much flexibility does choosing a regularization matrix give us? Is it enough, for

instance, to effectively remove one of the data points (say, an outlier) from our training set,

without impacting the rest of the point predictions? As we will see, the answer is yes, and

this can be achieved using just a rank-1 update to the regularization matrix. This is very

different than the Ridge Regression case, where the only way to remove the influence of a

point that has a very large feature values is to make λ very large, which will have a profound

negative impact on the predictions for the other points.

As we will see in the following theorem, if we have a regularization matrix
∼
Λ, we can

change it to a new regularization matrix Λ via a rank-1 update such that our predictions are

exactly as though they would have been had one of the points in our data set not been there,

and we had used the regularization matrix
∼
Λ for training on that modified data set (which

lacks that point). We will assume, without loss of generality, that it is the first point in the

data set that is being removed.

Theorem 9. Let w and
∼
w be the solution coefficients for two Generalized Ridge Regression

problems, with regularization matrices Λ and
∼
Λ respectively, trained on the features and labels

(X, y) and (
∼
X,
∼
y) respectively, where

∼
X is just X with the first point (i.e. column) removed,

and
∼
y is just y with the first point (i.e. row) removed. Furthermore, let C ≡ XXᵀ,

∼
C ≡

∼
X
∼
X

ᵀ

,

R ≡ (C + Λ)−1 and
∼
R ≡ (

∼
C +

∼
Λ)−1, so that w = RXy and

∼
w =

∼
R
∼
X
∼
y. Then

w =
∼
w when Λ

∼
w = Xy − C∼w,

which for n > 1 leaves us an infinite number of choices for Λ. If we further require Λ to be

such a choice of regularization matrix to ensure w =
∼
w while minimizing the Frobenius norm
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||Λ−
∼
Λ||F , which is the sum of the squared differences between elements of Λ and

∼
Λ, then we

have a unique solution:

Λ =
∼
Λ +

u
∼
w

ᵀ

∼
w

ᵀ∼
w

with

u = Xy − (C +
∼
Λ)
∼
w

and so Λ represents a rank-1 update to the matrix
∼
Λ, which is sufficient to completely remove

the effect of one point.

This choice of Λ ensures that we exactly reproduce the predictions we would have gotten

had we been using
∼
Λ for regularization and had the first point (X1, y1) not in our data set,

while still trying to keep Λ as close to
∼
Λ as possible to distort the original problem as little

as possible.

Proof. We want to set Λ so that

w = (C + Λ)−1Xy =
∼
w

That’s equivalent to showing that:

Xy = (C + Λ)
∼
w

or

Λ
∼
w = Xy − C∼w

as required. Now, we want to find the choice of Λ satisfying the above equation that minimizes
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||Λ−
∼
Λ||2F . Let us use q ≡ Xy−C∼w so that our constraints can be written Λ

∼
w−q = 0. Then,

introducing a vector ρ of Lagrange multipliers to reflect our constraints, we differentiate the

Lagrangian with respect to the elements of Λ subject to the constraints and set the result

equal to zero, writing:

d

dΛrs

||Λ−
∼
Λ||2F + ρᵀ(Λ

∼
w − q)

=
d

dΛrs

n∑
i=1

n∑
j=1

(Λij −
∼
Λij)

2 +
n∑
k=1

ρk

( n∑
t=1

Λkt
∼
wt − qk

)

= 2(Λrs −
∼
Λrs) + ρr

∼
ws = 0.

Hence, we find that:

Λrs =
∼
Λrs −

1

2
ρr
∼
ws

and so

Λ =
∼
Λ− 1

2
ρ
∼
w

ᵀ

which we see is a rank-1 update to
∼
Λ. Now, we need to solve for the Lagrange multipliers ρ,

so we apply our constraint that Λ
∼
w = q by multiplying both sides of the equation by

∼
w on

the right. This gives us

q = Λ
∼
w =

∼
Λ
∼
w − 1

2
ρ
∼
w

ᵀ∼
w.

which means that

ρ =
2
∼
w

ᵀ∼
w

(
∼
Λ
∼
w − q) =

2
∼
w

ᵀ∼
w

(
∼
Λ
∼
w + C

∼
w −Xy) =

2
∼
w

ᵀ∼
w

((
∼
Λ + C)

∼
w −Xy)

Therefore

Λ =
∼
Λ +

(Xy − (C +
∼
Λ)
∼
w)
∼
w

ᵀ

∼
w

ᵀ∼
w

as required. Note, that the resulting matrix Λ may or may not be positive definite, depending
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on the training data. However, even if it is not positive definite, the solution coefficients

w based on Λ can still be defined using w = (C + Λ)−1Xy so long as the inverse exists.

Alternatively, we could have chosen a positive definite Λ to remove the effect of the point in

question, but in that case it may not be representable with a rank-1 update to
∼
Λ.

5.7 Choices for the Regularization Matrix

As we have seen, generalizing the penalty in Ridge Regression to a full regularization

matrix Λ provides a lot of flexibility. But what sort of choices for Λ other than Λ = λI might

be useful in practice?

It is often desirable that our regularization matrix has a free “complexity parameter” α ≥ 0,

like the λ of Ridge Regression, which allows us to match the strength of our regularization

to the complexity of the problem at hand. Since the right choice of this parameter is very

difficult to derive theoretically, and depends on aspects of the underlying problem like the

noise level, number of features, and sample size, we generally learn this parameter from

the data itself (e.g. using k-fold cross-validation). This parameter α is designed to tradeoff

between bias and variance. When α = 0 we want minimum bias, so generally we will want

our algorithm to become equivalent to Ordinary Least Squares regression. At the other

extreme as α → ∞, we want the solution will depend minimally on the data and there-

fore to have low variance, being driven entirely or almost entirely by some kind of baseline

assumption or prior (e.g. that few features are important or that large coefficients are unlikely).

With this in mind, we will now introduce some families of regularization matrices Λ, each

containing a free complexity parameter α.

189



5.7.1 Diagonal Λ Based on Feature Badness

When Λ is a diagonal matrix, its action is to penalize individual features different amounts.

This can be useful when one has a way to determine which features are more likely to be

reliable than others, or which coefficients are less likely to be close to zero than others.

Suppose that for each feature Xj we have a measure zj of how “bad” we expect this feature

to be, relative to the other features. This could be reflective of each feature’s estimated

measurement noise, our prior probability on it having a large value, whether that feature is

correlated with the other features, or something else. We call zj the “feature badness” of

the ith feature. Then, we can use a diagonal matrix for Λ with Λii = κα(zi), where κα is a

function that maps the feature badness zi for the ith feature into the penalty that we will be

applying for that feature. Here α is our complexity parameter.

We can think of the two extreme endpoints of α (i.e. α → ∞ and α = 0) as deter-

mining whether we will only use the most reliable feature (ignoring all the others), or whether

we will treat all features equally (ignoring how bad each feature is, which means we are

using Ordinary Least Squares). When α is between these two extremes we will trust the bad

features less than the better features by penalizing the bad ones more, but all features will get

used. In essence, α prevents us from overfitting by reducing how much we trust potentially

unreliable features. This encompasses the idea of reducing the dimension of our problem by

removing features (i.e. feature selection), but it also includes a soft and more general form

of feature selection. Rather than dropping features, it allows us to trust features different

amounts. Those that seem very bad might end up being almost entirely removed, but all

features may get used to some extent, or all features worse than some cutoff value could be

removed completely. Any traditional feature selection algorithm, as long as it assigns a score
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to each feature based on how bad or useless that feature seems, could be used as the measure

of feature badness in order to apply this approach.

In the simplest case, we will have κα(zi) = α ∀i, which reproduces Ridge Regression (using α

in place of the usual λ). This corresponds to a prior that larger coefficients are less likely than

small ones, while treating all coefficients equally. A somewhat more interesting choice would

be κα(zi) = αzi ∀i, where in this simple case we assume the zi are constants independent of

the training data. This would be appropriate when we have a priori knowledge of how likely

each coefficient is to be large, which we encode in the zi. However, it is worth noting that

the unit or scale of each feature matters here, so it is common to first normalize the features

(e.g. by subtracting the training data feature means from each training and testing feature,

and dividing by the training data feature standard deviations). Then the zi do not have to

take into account the scale or units of the features.

In fact, if we assume the features are centered so that each has mean 0, then we can

think of Ridge Regression, after the features have been normalized to have unit variance, as

being simply a case of using a diagonal regularization matrix (without feature normalization).

To see why, note how regularizing the kth feature with the feature dependent penalty λ
σ2
k

ends

up being equivalent to normalizing each feature by multiplying Xk by a constant σk (through

a change of variables rk = wk/σk):

min
w

m∑
i=1

(X iᵀw − y)2 +
n∑
k=1

λ

σ2
k

w2
k

= min
w

m∑
i=1

(
n∑
k=1

X i
k

ᵀ
wk − y)2 +

n∑
k=1

λ

σ2
k

w2
k
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= min
w

m∑
i=1

(
n∑
k=1

σkX
i
k

ᵀwk
σk
− y)2 +

n∑
k=1

λ

σ2
k

w2
k

= min
r

m∑
i=1

(
n∑
k=1

σkX
i
k

ᵀ
rk − y)2 + λ

n∑
k=1

r2
k.

So, in a sense, regularization with a diagonal matrix is very popular, as it occurs im-

plicitly whenever we divide our features by constants to normalize them. It is worth noting

that in Ordinary Least Squares, normalization of features has no effect. When we move to

Ridge Regression, normalizing features only has an impact precisely because it distorts the

penalty of our regularization. This choice of normalization can end up mattering a lot.

Let us consider an extreme example, where the choice of feature normalization (or equivalently,

of an appropriate diagonal regularization matrix) can be essential for achieving adequate

prediction performance. Suppose that the true coefficients of the linear model that generated

our data are equal to 1 for the first n/2 features, and equal to ρ for the remaining n/2 features,

where ρ is some large number. Furthermore, suppose that those first n/2 features of our

training data all have standard deviations of 1, and last n/2 features have standard deviations

of 1/ρ. Finally, suppose that the number of features is large compared to the number of points,

or that the label noise is high, so that a significant amount of regularization will be needed

to prevent overfitting. Now, here’s the conundrum. In this setup, all features contribute to

the final labeling of a point about the same amount (since a huge coefficient multiplied by

values with a correspondingly tiny standard deviation lead to values approximately equal

to 1). If we choose our Ridge Regression regularization parameter λ to be large in order to

prevent overfitting adequately, then it wipes out the features with standard deviations equal

to 1/ρ, since the tiny standard deviation magnifies the impact of regularization. On the other
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hand, if we do not make our regularization strong, then we overfit our sample. We get poor

performance either way.

5.7.2 Feature Penalty Functions

We have previously discussed the idea of introducing a function κα(z) to map a measure

of how bad a feature is (i.e. z) into a regularization penalty for that feature, and we have

introduced very simple cases. But more generally, what properties would we want such a

function κα to have? We propose that it is useful to have such a function satisfy the following

properties, which we use as the definition of a “Feature Penalty Function.”

Definition of a Feature Penalty Function

We would like our choice of function κα(z) to have the following properties. Any function

with these properties we will call a Feature Penalty Function.

1. κα(z) is defined on the domain z ≥ 0 (since negative badness does not make sense

in this context) and α ≥ 0 (since a negative regularization strength also does not

make sense).

2. κα(z) should be a non-decreasing function of z, since features of greater badness

should have a penalty at least as large as features of less badness.

3. limz→∞ κα(z) =∞, since an infinitely bad feature should have infinite penalty so

that it is ignored completely.

4. κα(0) = 0, since a feature with no badness should be trusted fully, and therefore

not penalized at all.
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5. limα→∞ κα(z) = ∞ when z > 0, since as α goes to ∞ we maximally distrust all

features, so we have no trust at all (i.e. infinity penalties) for all features that have

any badness at all.

6. κ0(z) = 0, since with α = 0 we completely ignore how bad each feature is, so

no penalty is given to any point (which means we are performing Ordinary Least

Squares regression).

There are infinitely many possibilities for feature penalty functions, but here we give two

convenient examples.

Lemma 5. The functions

κα(z) =
(
z + 1

)α
− 1

and

κα(z) = α z

are both Feature Penalty Functions.

The proof is trivial, it simply involves evaluating each of these two functions against each

of the relevant properties. We note that for z close to 0 these two Feature Penalty Functions

closely agree, as the second function is the linear taylor series approximation of the first

function.

Note that if our choice of how we measure badness (and therefore, how we define z) does not

naturally cover the range [,∞), it may be beneficial to transform it so that it does cover the

full range.
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5.7.3 Measuring Feature Badness

5.7.3.1 One Dimensional Prediction Error

How can we measure the badness of a feature in practice? One approach is to predict

our labels using each feature on its own (without any of the other features) and use the

prediction error for the ith feature as our value for zi. This makes use of the intuition that

a feature which performs well on its own is more likely to be useful (when combined with

other features) than one which does not. If we think in terms of priors, we have replaced

the Ridge Regression prior (that coefficients are small) with a new prior which says that a

feature is more likely to be useful in our final model if it is useful when it is used alone, and

hence it should receive less penalty than other features. The complexity parameter α ≥ 0

regulates the strength of our prior, just like λ ≥ 0 determines the strength of the prior in

Ridge Regression.

In keeping with the above, if we are using linear (i.e. non-kernelized) regression, we could

use the linear prediction error for each feature’s badness. In that case, the badness would be:

zi ≡ V ar(y)− Cov(Xi, y)2

V ar(Xi)

where V ar(y) is the variance of a vector y, and Cov(Xi, y) is the covariance between vectors

Xi and y. We would then apply a Feature Penalty Function to convert these badness scores

into penalties. However, since the range of the zi is not [0,∞) we might want to transform

first, for instance by dividing by V ar(y) to put it into the range [0, 1], which gives simply

1− Cor(X, y)2, and then applying a transformation such as z → 1
1−z − 1 = 1

Cor(X,y)2
− 1 to
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make the range [0,∞]. Note that in the kernelized case, it is useful to consider non-linear

predictions instead of just linear ones. For instance, in a polynomial case we could fit a one

dimensional kth degree polynomial of the ith feature against our labels, and use the error of

those predictions for our zi.

5.7.3.2 Relatedness to Other Features

Another approach to defining the feature badness is to consider how related each feature

is to every other feature. For example, we can define:

zi = 1− 1

n− 1

n∑
j 6=i

|Cor(Xi, Xj)|p.

were Cor(Xi, Xj) is the correlation between vector Xi and vector Xj and p > 0. This

measures how correlated each feature is to all the other features, and assigns a high badness if

the feature is highly correlated to the others. The larger p is, the more the largest correlations

a feature has matters compared to its smaller correlations. Given an equation such as this

one, we might choose to transform it to the range [0,∞). Regardless though, we would

then apply a Feature Penalty Function to map the scores into penalties. This choice of how

to measure badness will reduce the reliance on features that do not have a strong linear

relationship to any other features in the data (whether positive or negative). This can be

useful because in some circumstances a feature having little to do with the other features

makes it less likely to be useful in making predictions. For instance, this can occur because

features that are dominated by noise rather than signal will not be strongly related to the

other features, or because features that appear only rarely (e.g. rare words in text based

features) will have low correlations to other features and also be of little use in making

predictions. In other cases information that is important will tend to crop up in multiple

features, and so a feature having low similarity to the other features is a sign of low importance.
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In other situation one might want to define a badness score that is exactly the reverse

of the one above, taking zi → 1 − zi in the previous formula. This new notion of badness

may be useful in a setting where many features are redundant, and it is important to hone in

on the most unique information, so we want to give unique information the least penalty.

Sometimes high correlation to other features makes a feature more likely to be useful, and in

other cases it makes it more likely to be useless. This illustrates that, inevitably, the choice

of how to define feature “badness” is dependent on the prior information we have. Choosing

the right regularization for a problem is an exercise in asking yourself what you believe you

already know about that problem.

5.7.4 Principal Component Based Λ

We look now at another special choice of Λ, one that induces behaviors that have the

flavor of principal component analysis. Consider the singular value decomposition of our

training features matrix X. We write:

X = UΣQ

where U and Q are orthogonal matrices and Σ is a diagonal matrix with all non-negative

diagonal elements. We call U the principal component eigenvectors of X. We are going to

assume that m > n (i.e. there are more points than features) and that Σ has all positive

diagonal elements. This allows us to make an unconventional choice for the shapes of the

matrices. Namely we choose U and Σ to both be of size n×n, so U and Σ are both invertible.

This means that Q has size n×m and that Q is therefore not invertible.

Theorem 10. Let Λo be any positive definite matrix and let the columns of U be the principal

component eigenvectors of X. Assume that the singular values of X are all positive. Then, in
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Generalized Ridge Regression, using the regularization matrix

Λ = UΛoU
ᵀ

is equivalent to performing Generalized Ridge Regression with regularization matrix Λo on a

new set of features, equivalent to the original features in our data set once they have been

projected onto the principal component eigenvectors.

Proof. By definition, the principal component eigenvectors are given by the columns of U ,

and the projection coefficients that we get from projecting each point in X onto each of them

is given by UᵀX = UᵀUΣQ = ΣQ. So performing Generalized Ridge Regression with the

projected coefficients as features, where we use the matrix of eigenvectors U to project the

point x0 that we are going to be predicting, would give us the following quantity for the

solution coefficients wpca applied to predict the point x0:

xᵀ0wpca = xᵀ0U(ΣQ(ΣQ)ᵀ + Λo)
−1(ΣQ)y

= xᵀ0U(UᵀX(UᵀX)ᵀ + Λo)
−1(UᵀX)y

= xᵀ0U(UᵀXXᵀU + UᵀUΛoU
ᵀU)−1(UᵀX)y

= xᵀ0UU
ᵀ(XXᵀ + UΛoU

ᵀ)−1U(UᵀX)y

= xᵀ0(XXᵀ + UΛoU
ᵀ)−1Xy

= xᵀ0(XXᵀ + Λ)−1Xy.

Hence, we see that we can choose our regularization to operate on the PCA feature

space instead of the original feature space. And if we choose Λo to be a diagonal matrix,
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we can directly control the penalty applied to the PCA eigenvector features. For instance,

applying ideas previously discussed, we can assign a badness to each PCA feature based on

the one dimensional prediction accuracy we can achieve with each PCA feature. Or we can

penalize each of these features based on the corresponding singular values. Larger singular

values in the principal component analysis are associated with greater variance captured by a

feature, so we can, for instance, think of the reciprocal of each singular value as a measure of

badness, and then apply a Feature Penalty Function to map these badness values into penalties.

How does a PCA based approach to regularization differ from Ridge Regression? This

difference becomes strongly apparent when we consider what happens in the presence of fea-

tures that are repeated, or nearly repeated. In the principal component analysis case, nearly

identical features will get collapsed together into a single new feature. We now investigate

however what happens with Ridge Regression in the presence of repeated features, which is

quite different than the PCA case.

5.7.5 Repeated Features in Ridge Regression

We now consider what happens when our data set contains repeated features, and how

the solution coefficients relate to what would have been achieved if those features were not

repeated. As we will see in the lemma, repeated features Xj have their Ridge Regression

penalty weakened by a factor 1
ri

compared to if the feature had only appeared once.

Lemma 6. Let X be an n by m matrix of training points, with one point per column and one

feature per row. Let the matrix X̄ be identical to the matrix X, except with each feature Xj of

X included exactly rj ≥ 1 times. Therefore r =
∑n

j=1 rj is the total number of features in X̄.

Finally, let x be any vector of length n (the point we will be making a label prediction for) and

let x̄ be a vector of length r thats consist purely of values from x but with xj repeated rj ≥ 1
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times, with each value x̄k being a repetition of xj precisely whenever feature X̄k is a repetition

of feature Xj. Then the prediction function that is the solution to the Ridge Regression

problem with training data (X̄, y) will assign the same predicted label to point x̄ that the

solution to the Generalized Ridge Regression problem with training data (X, y) and diagonal

regularization matrix Λ = diag( λ
rj

)ni=j assigns to point x. In other words, w̄∗
ᵀ
x̄ = w∗

ᵀ
x, where

w̄∗ ≡ argmin
w̄∈Rr

m∑
i=1

(w̄ᵀX̄ i − yi)2 + λ

r∑
k=1

w̄2
k (5.3)

and

w∗ ≡ argmin
w∈Rn

m∑
i=1

(wᵀX i − yi)2 + λ

n∑
j=1

wj
2

rj
.

Furthermore, w̄∗k =
w∗j
rj

whenever the feature X̄k is identical to the feature Xj.

This means that the linear function solving the optimization problem (5.3) where there

are repeated features is the same one that would have been achieved if each repeated feature

had occurred only once, except that the regularization penalty on each repeated feature is

reduced. The penalty strength is λ
rj

instead of the usual λ due to the feature being repeated

rj ≥ 1 times. So repeated features act just like non-repeated features, except that they are

pushed less strongly towards 0. Hence, if the algorithm needs to push one of the repeated

features to 0 to achieve high prediction accuracy, a larger λ must be selected than if the

feature had not been repeated.

Proof. We observe that the Ridge Regression optimization problem (5.3) for training data X̄

does not change at all if we swap variable w̄j for variable w̄k so long as features X̄j and X̄k

are identical. What’s more, the final values w̄∗j and w̄∗k for these variables must be the same,

due to the complete symmetry of how such variables appear in the optimization problem.

We use the vector w+ to represent the subset of variables from w̄ corresponding to only the
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unique features of X̄, so w+
j corresponds to feature Xj, which we recall appears rj times in

X̄. Define the functions F̄ and F :

F̄ (w̄) ≡
m∑
i=1

(
w̄ᵀX̄ i − yi

)2

+ λ
r∑

k=1

w̄2
k

F (w) ≡
m∑
i=1

(
wᵀX i − yi

)2

+ λ
n∑
j=1

w2
j

rj

Exploiting the symmetry for variables corresponding to the same (repeated) feature, and

then applying a change of variables wj = rjwj
+, we write:

min
w̄∈Rr

F̄ (w̄) = min
w̄∈Rr

m∑
i=1

(
w̄ᵀX̄ i − yi

)2

+ λ
r∑

k=1

w̄2
k

= min
w̄∈Rr

m∑
i=1

( r∑
k=1

w̄kX̄
i
k − yi

)2

+ λ
r∑

k=1

w̄2
k

= min
w+∈Rr

m∑
i=1

( n∑
j=1

rjwj
+X i

j − yi
)2

+ λ
n∑
j=1

rjw
+
j

2

= min
w∈Rr

m∑
i=1

( n∑
j=1

wjX
i
j − yi

)2

+ λ
n∑
j=1

w2
j

rj

= min
w∈Rr

m∑
i=1

(
wᵀX i − yi

)2

+ λ

n∑
j=1

w2
j

rj
= min

w∈Rr
F (w).

This shows us that if w̄∗ is the minimizer of F̄ (w̄) then w∗ is the minimizer of F (w), where

w∗j = rjw̄
∗
k whenever X̄k is a repetition of the feature Xj , or using our previous notation, that

w∗j = rjw
+∗
j . This relationship implies that for x and x̄ as defined in the statement of the

lemma:

w̄∗
ᵀ
x̄ =

r∑
k=1

w̄∗kx̄k =
n∑
j=1

rjw
+
j xj =

n∑
j=1

w∗jxj = w∗
ᵀ
x
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This completes our proof.

5.8 Conclusion

We have seen that generalizing the 2-norm regularization term ||w||2 used in least squares

regression to a full quadratic form (w − b)ᵀΛ(w − b) provides a flexible, and analytically

tractable way of encoding prior knowledge into regression problems, and encompasses a wide

range of algorithmic behaviors.

5.9 Chapter Notes

Lemma 7. When z is a vector valued random variable that follows a multivariate normal

distribution with mean equal to the zero vector, and covariance matrix equal to the identity

matrix (so each zi is independent of the other zj), then for any matrix M:

Ez[z
ᵀMz] = Tr[M ]

where Ez[.] is the expected value with respect to z, and Tr[.] is the matrix trace.

Proof.

Ez[z
ᵀMz] = Ez[

∑
i,j

M j
i zizj] =

∑
i,j

M j
i Ez[zizj] =

∑
i

M i
iEz[z

2
i ]

=
∑
i

M i
iV ar[zi]. =

∑
i

M i
i = Tr[M i

i ].

Corollary 3. When x is a random variable that follows a multivariate normal distribution
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with mean µ and positive definite covariance matrix C, then for any matrix M:

Ex[x
ᵀMx] = Tr[(C + µµᵀ)M ]

Proof.

Ex[x
ᵀMx] = Ex[(x− µ+ µ)ᵀM(x− µ+ µ)]

= Ex[((x− µ)ᵀ + µᵀ)M(x− µ) + ((x− µ)ᵀ + µᵀ)Mµ]

= Ex[(x− µ)ᵀM(x− µ) + µᵀM(x− µ) + (x− µ)ᵀMµ+ µᵀMµ]

= Ex[(x− µ)ᵀM(x− µ)] + µᵀMµ

= Ex[(C
−1/2(x− µ))ᵀC1/2MC1/2C−1/2(x− µ)] + µᵀMµ

= Ez∼Norm(0,I)[z
ᵀC1/2MC1/2z] + µᵀMµ = Tr[C1/2MC1/2] + µᵀMµ

= Tr[CM ] + Tr[µᵀMµ] = Tr[CM ] + Tr[µµᵀM ] = Tr[(C + µµᵀ)M ]

where we have made use of Lemma 7 to introduce the trace Tr[.].

Corollary 4. When x is a random variable that follows a multivariate normal distribution

with mean µ and positive definite covariance matrix C, then for any vector v:

Ex (xᵀv)2 = ||
√
C + µµᵀ v||2

where
√
C + µµᵀ is the positive definite square root of the positive definite matrix (C + µµᵀ),

and ||.|| means the 2-norm of a vector.

Proof.

Ex(x
ᵀv)2 = Exx

ᵀvvᵀx = Tr[(C + µµᵀ)vvᵀ]
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= vᵀ(C + µµᵀ)v = vᵀ
√
C + µµᵀ

√
C + µµᵀv = ||

√
C + µµᵀ v||2

where we have made use of Corollary 3 to introduce the trace Tr[.].
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Chapter 6

Impatient Learning for Least Squares

Regression

We have spent a substantial amount of time so far investigating Ordinary Least Squares

regression, which is probably the most popular prediction algorithm on earth, and Ridge

Regression, which is the most common way to regularize Ordinary Least Squares. As we

saw for empirical examples in Chapter 1, Ridge Regression corrects a number of problems

that can trip up Ordinary Least Squares. Ridge Regression’s biggest advantages are that it

prevents overfitting, handles noisy labels and correlated features well, and can be kernelized

to make non-linear predictions.

However, Ridge Regression also has some drawbacks. Just to form the covariance ma-

trix XXᵀ takes time on the order of mn2 (when non-kernelized) which can be too large

for large datasets that have many features. Plus, common implementations that use k-fold

cross-validation require setting the regularization parameter λ by training with many different

λ values on each of 5 or 10 different folds of data, which increases running time by a factor

of more than 100 compared to Ordinary Least Squares. Another thorny issue is that if our

205



grid of λ values to test is not fine enough, or not wide enough, then we can end up with an

insufficiently good choice of λ, meaning that practitioner expertise sometimes is drawn upon

to determine which λ values to try. What is more, the standard implementation of Ridge

Regression based on solving a least squares problem requires loading all data into memory at

once, making it inappropriate for very large data sets. Finally, the standard Ridge Regression

algorithm is rigid in that it can’t be be adapted to problems with different loss functions.

In this chapter, keeping these issues in mind, we explore an alternative to Ridge Regression

that has many of the same benefits, has no difficult to deal with free parameters that need

tweaking, is potentially much faster for very large data sets, and which can be adapted easily

to changes in loss function.

6.1 Introduction

Ridge Regression is the most popular way to modify Ordinary Least Squares regression

to prevent overfitting. However, the standard implementation of Ridge Regression can be

unacceptably slow when the number of points and features are both large. In this chapter

we consider an alternative approach to preventing overfitting in Least Squares Regression.

We solve the Ordinary Least Squares problem iteratively using gradient descent with early

stopping, which is a well known alternative to regularization that causes a machine learning

problem to have fewer “effective” parameters, with the number of effective parameters in-

creasing as the training time increases (Weigend and Rumelhart, 1992). More specifically, to

decide when to stop we apply the gradient descent procedure in parallel to κ different folds of

data (i.e. training κ sub-algorithms), each fold with its own mutually exclusive out of sample

data set, an iterative form of k-fold cross-validation. Our predictions then are made by taking

a weighted average of the predictions of these κ sub-algorithms, where sub-algorithms with
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more out of sample error get less weight. Combining the sub-algorithms in this way allows us

to use all of our data, rather than needing to sacrifice some of it to form a fixed validation

set. Furthermore, this approach gives us a simple and effective stopping criteria: when the

average out of sample fold error does not improve more than a certain percentage after an iter-

ation of all κ sub-algorithms, we stop. We will refer to this procedure as “Impatient Learning”.

We find that this algorithm is generally much faster than the standard implementation

of Ridge Regression with k-fold cross-validation, especially when the number of points and

features is large. But it has some other desirable properties relative to Ridge Regression,

as well. Its only free parameter is easy to set and does not require tuning, it is easy to

adapt to other differentiable, convex loss functions beyond the squared error loss function

of Ridge Regression, and it can be modified to handle very large data sets. What is more,

certain types of prior knowledge can easily be built into the algorithm, such as the knowledge

that certain coefficients must be positive. As we will show, it is also very easy to kernelize

Impatient Learning so that it can be applied to non-linear learning problems.

Our Python code for implementing Impatient Learning is in the public domain, and can be

found at the URL in the following footnote 1.

In the next section we will more formally define the Impatient Learning algorithm. To

increase applicability, we introduce the algorithm for arbitrary differentiable loss functions

L, which measure how bad it is to predict the label a for a point when in fact b is the label.

Later, when we want to empirically investigate the accuracy of Impatient Learning compared

to standard Ridge Regression we will use the standard squared loss function L(a, b) = (a−b)2.

1http://spencergreenberg.com/code/doctoral_thesis_machine_learning_code.zip
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6.2 Impatient Learning

We define θ to be a vector of parameters that specify a hypothesis function hθ(X). A

hypothesis function maps a matrix of points X (with m points X i, one per column, and n

features Xj, one per row) into a vector of predicted labels for those points or, when it is

convenient to consider functions acting on a single point at a time, maps a point x into a

predicted label for that point. Let θ∗ correspond to an initial guess, hθ∗ , of what a good

hypothesis function might be. If no guess can be given, θ∗ = 0 can be used, which indicates

that we expect many of our parameters to be 0 or close to 0.

We now define our objective function G(θ, S) = L(hθ(X), y) which we will be using our

algorithm to reduce the value of by updating parameter θ. Note that when applied to vectors

of values (rather than individual values) we will typically define L as L(~a,~b) =
∑m

i=1 L(ai, bi),

since most common objective functions take this form, but this additive form of loss function

is not required. For the gradient of our objective function with respect to θ we will write

∇G ≡ ∇θG(θ, S). Let η(θ, S,∇G) be a function which computes (or approximates) the

optimal step-size to move along the negative of the given gradient ∇G, for a particular

current training set S = (X, y), to reduce the function G(θ, S) as much as possible. Hence

η(.) computes the solution to the one dimensional optimization problem:

η(θ, S,∇G) = argmin
η′

G(θ − η′∇G).
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Note that in some cases we may choose ∇G independently of S, so it is important to

treat ∇G as an independent input to the function η(.).

Our learning algorithm will make use of κ sub-algorithms, A1, A2, . . ., Aκ, each of which is

solving its own learning problem on a slightly different subset of the data. We will make κ

copies of our training data S = (X, y), with each copy S1, . . . , Sκ omitting approximately a

fraction 1
κ

of the training data, chosen so that each data point in S is missing from exactly

one of these copies Si.

Now, we will train our κ sub-algorithms in parallel, each on a different Si, measuring

the error Ei at each iteration for each algorithm on the data that each algorithm is not

trained on, and sum these errors E ≡
∑κ

i=1 Ei to produce an estimate of the true out of

sample error. If after an iteration (of all κ sub-algorithms) this out of sample error estimate

has not decreased a sufficiently large percentage, then we halt the entire algorithm. We

generally discard this final step if it made the out of sample error worse, since it may have

caused overfitting. However, as a variant of the algorithm that we can use if we choose, when

the error actually gets worse with the last step rather than simply not improving as much as

is desired, an approach to squeeze slightly more performance out of the algorithm is to take

a final gradient step (after discarding the last regular step), but where we optimize the step

size with respect to the out of sample error for that fold, rather than the in sample error for

that fold. This is important if even one step is too many (i.e. overfitting occurs immediately).

Note that once the entire algorithm finishes, Ei serves as an estimate of the reliability of

sub-algorithm Ai. Hence, when selecting our weights wi we can use this to our advantage,
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weighting each algorithm’s prediction by a decreasing function of its error Ei, and then

normalizing so that the weights sum to 1. Alternatively, we can simply assign each algorithm

Ai the same weight, wi = 1
κ
, which treats all sub-algorithms as equals, but this is throwing

away potentially valuable information about the accuracy of each sub-algorithm. We suggest

calculating the R2 of each sub-algorithm, which we’ll denote R2
i , and then assigning weights

wi =
R2
i∑κ

j=1R
2
j
, where we define the R2 of a prediction function h(x) on an out of sample data

set (X,y) in a slightly idiosyncratic way as:

R2 ≡ 1− L(h(X), y)

minc L(c~1, y)

when this quantity is positive, and 0 when this quantity is non-positive, where ~1 is the vector

of all ones, and c is the scalar constant that minimizes L(c~1, y) for the given loss function L.

In the case of the squared loss function, c is just the mean of the label vector y. Note that

this definition means that R2 is the fraction of loss captured by our algorithm, relative to

the optimal constant (out of sample) predictor. We call this “R2” since in the common case

where L is the squared loss function, it simply gives us the fraction of variance captured by

our predictor, and coincides with the typical notion of R2. We set it to 0 in the rare case

where the calculation is negative because this situation implies an algorithm’s predictions are

worse than a constant predictor, which likely means the algorithm learned nothing at all or

overfit, and therefore that we do not want to rely on it.

Using this weighting scheme, a perfect predictor will be assigned a maximal weight of

1 (prior to normalizing the weights so that they sum to 1), and a predictor that is worse

than the optimal constant predictor will be assigned a weight of 0. While theoretically an

algorithm with perfect predictions should receive all the weight rather than an unnormalized

weight of 1, we do not know the true error of any algorithm, only an estimate based on a

210



small portion of withheld data. Hence, using a weighting scheme that explodes to infinity as

the error for an algorithm goes to 0 is risky, as 0 error out of sample, while impressive, does

not imply a perfect predictor.

In the Impatient Learning algorithm, the total validation error, E, which is the sum of

errors made by each algorithm on its own validation set, serves as a proxy for the out of

sample generalization error for the whole combined system. In fact though, we expect the

whole system to produce a lower out of sample error than E, since it has the benefit of

combining together all of the different sub-algorithms, each trained on slightly different data,

whereas the components that go into E each use only one such algorithm. A step-by-step

description of the Impatient Learning algorithm is shown as Algorithm 6.

If the total validation error, E, as a function of the number of iterations, has many lo-

cal maxima and minima then the stopping rule suggested above, Eold−Enew
Eold

< E , will stop

at the first local minima, which will generally be too early. But our experiments suggest

that, for the squared loss, this function of E is smooth and does not have problematic local

minima. See page 233 for examples. It is a non-trivial observation that there is typically a

smooth curve, with a unique minimum describing the out of sample error as a function of the

number of iterations, since this makes the stopping criteria much more reliable. Choosing

when to stop in cases where there can be multiple local minimums is a non-trivial problem,

and one generally must resort to one of a variety of heuristics, which may or may not be

reliable in any particular instance (Prechelt, 1998).
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Algorithm 6 Impatient Learning

1: Impatient Learning can be sensitive to how the labels are centered, so we run an outlier

clipping algorithm (e.g. Impact Clipping or Winsorization) on y to clip any extreme

labels, then compute the mean, and subtract this mean from the clipped labels.

2: Split our training set S = (X, y) into κ mutually exclusive subsets V1, V1, . . ., Vκ with

sizes that are as close as possible to each other. Set Vi will be the validation set for

sub-algorithm Ai, which we will use to measure Ai’s out of sample error.

3: Make κ overlapping subsets of S called S1, S2, . . ., Sκ, each defined as Sκ = S − Vκ. Set

Si will be the training set for sub-algorithm Ai.

4: Make κ copies of our starting parameter vector θ∗, call these θ1, θ2, . . ., θκ. These

represent the parameters for each of our κ sub-algorithms.

5: For each sub-algorithm Ai, update the corresponding parameter vector θi via gradient

descent using Si by taking θi → θi − η∇G ≡ θi − η(θi, Si,∇θiG(θi, Si))∇θiG(θi, Si).

6: For each sub-algorithm Ai, record the prediction error Ei = G(θi, Vi) made on its validation

set Vi, and compute aggregated out of sample error estimate Enew = E1 + E2 + . . .+ Eκ.

7: If it is not iteration 1, compare total out of sample error estimate Enew to its prior value

Eold. If Eold−Enew
Eold

< E stop looping and go to Step 8, since it is not worth continuing,

and further iterations may overfit. In this case, if the error estimate has actually gotten

worse, discard the last iteration since it may cause overfitting. If Eold−Enew
Eold

≥ E update

the error setting Enew → Eold, and go to Step 5.

8: Predict points using a weighted average of the predictions of the individual sub-algorithms.

Hence, our prediction for a point x will be h(x) = w1hθ1(X) +w2hθ2(x) + . . .+wκhθκ(x).

The weights wi can be chosen in various ways (discussed elsewhere in Section 6.2 of

this chapter), but they should be non-negative, sum to 1, and give more weight to the

sub-algorithms Ai that have lower out of sample fold error Ei.
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6.3 Iterative Least Squares Regression

We now consider the interesting special case of Impatient Learning where our loss function

is the squared loss function, which is used by Ordinary Least Squares and Ridge Regression.

In this case, we have the objective function:

G =
m∑
i=1

(X iᵀw − yi)2.

The gradient, which is the vector in the direction we will be stepping along, is then given by:

d

dw
G = 2

m∑
i=1

X i(X iᵀw − yi) = 2
m∑
i=1

X iX iᵀw − 2
m∑
i=1

X iyi

= 2XXᵀw − 2Xy ≡ Dw − b

where

D ≡ 2XXᵀ and b ≡ 2Xy.

Then each, gradient descent step, which converts our previous coefficient vector wk−1 to our

new coefficient vector wk by subtracting a multiple of the gradient, is given by:

wk = wk−1 − ηk−1(Dwk−1 − b) = (I − ηk−1D)wk−1 + ηk−1b (6.1)

where ηk is the step size, which may be chosen to be a different value at each step k. Now,

recursively applying this equation to itself t times, we find that:

wk = (I − ηk−1D)wk−1 + ηk−1b

= (I − ηk−1D)((I − ηk−2D)wk−2 + ηk−2b) + ηk−1b
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= (I − ηk−1D)((I − ηk−2D)((I − ηk−3D)wk−3 + ηk−3b) + ηk−2b) + ηk−1b

= (I − ηk−1D)(I − ηk−2D)(I − ηk−3D)wk−3

+ ( (I − ηk−1D)(I − ηk−2D)ηk−3 + (I − ηk−1D)ηk−2 + ηk−1)b

=

(
t∏

j=1

(I − ηk−jD)

)
wk−t +

t∑
s=1

(
s−1∏
j=1

(I − ηk−jD)

)
ηk−s b

Hence, setting t = k we have:

wk =

(
k∏
j=1

(I − 2ηk−jXX
ᵀ)

)
w0 +

k∑
s=1

(
s−1∏
j=1

(I − 2ηk−jXX
ᵀ)

)
2ηk−s Xy (6.2)

where w0 is our starting guess for the solution coefficients. We notice that this equation for

wk consists of two terms. The first is simply some matrix (which depends on the number of

iterations) applied to the starting coefficients, w0, which reflect our best a priori guess for

the solution. Often we will use w0 = 0, in which case this term will disappear. The second

term is just a matrix (which depends on the number of iterations) applied to Xy.

To better understand Equation 6.2, consider what happens in the case where the step-

size ηk is a constant, η > 0. Then we have

wk = (I − 2ηXXᵀ)kw0 +
k−1∑
s=0

2η(I − 2ηXXᵀ)sXy

Under the assumption that XXᵀ is invertible, and that 0 < η < 1
σmax

, where σmax is the

largest singular value of XXᵀ, we can write an explicit formula for the right hand sum, which

is:

wk = (I − 2ηXXᵀ)kw0 + 2η(2ηXXᵀ)−1(I − (I − 2ηXXᵀ)k)Xy

= (I − 2ηXXᵀ)kw0 + (XXᵀ)−1(I − (I − 2ηXXᵀ)k)Xy
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= (I − 2ηXXᵀ)kw0 + (XXᵀ)−1Xy − (XXᵀ)−1(I − 2ηXXᵀ)kXy

= (I − 2ηXXᵀ)kw0 − (I − 2ηXXᵀ)k(XXᵀ)−1Xy + (XXᵀ)−1Xy

= (I − 2ηXXᵀ)k(w0 − (XXᵀ)−1Xy) + (XXᵀ)−1Xy

= (I − 2ηXXᵀ)k(w0 − wLS) + wLS

where

wLS ≡ (XXᵀ)−1Xy

is the solution coefficient vector for Ordinary Least Squares regression. As we will see,

(I − 2ηXXᵀ)k approaches 0 as k increases, so as expected the gradient descent algorithm

(with fixed step-size) follows a path from w0 (when k = 0) to wLS (as k →∞). In detail, if

we diagonalize XXᵀ writing

XXᵀ ≡ UΣUᵀ

where U is orthonormal and Σ is diagonal with diagonal entries σi > 0, which are the singular

values of XXᵀ, then we have:

(I − 2ηXXᵀ)k = (I − 2ηUΣUᵀ)k = (UIUᵀ − 2ηUΣUᵀ)k

= (U(I − 2ηΣ)Uᵀ)k = U(I − 2ηΣ)kUᵀ

= U


(1− 2ησ1)k 0 0

0
. . . 0

0 0 (1− 2ησn)k

Uᵀ.

Now, since XXᵀ is assumed to be invertible, the σi are always positive by definition. And

as long as w0 6= wLS, there is no harm assuming η is also strictly positive. Therefore

(1− 2ησi)
k → 0 as k →∞ so long as η < 1

σmax
.
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In summary, we can think of gradient descent, using the squared loss function with a

constant step-size, as following the path (I − 2ηXXᵀ)k(w0 − wLS) + wLS, indexed by the

iteration number k, which takes it from starting point w0 towards the least squared solution

wLS. We can view this as a form of shrinkage, where for iteration 0 we start at w0 and blend

increasingly into wLS as the iterations increase, only reaching wLS in the limit of an infinite

number of iterations. If we think of w0 as our best a priori guess for the solution coefficients

w, this also explains why early stopping can prevent overfitting. The fewer iterations, the

closer our solution coefficient will generally be to our starting guess w0, much like with Ridge

Regression where the greater the λ, the closer our solution coefficients are to the zero vector.

6.3.0.1 Locally Optimal Step Size

While using a constant step size ηk = η makes the gradient descent algorithm easy to

analyze, there is an advantage to choosing ηk more carefully so as to achieve faster convergence.

Early stopping means that we generally will not have to convergence all the way to the

solution of interest, but it is still desirable to get to convergence quickly. Hence, we consider

the locally optimal step size to take when performing gradient descent with the squared error

loss function. For the moment, assume that we will be stepping in the direction −∆G by a

step size η, where the gradient of our loss function at the current point is

∆G ≡ 2(XXᵀw −Xy) = 2X(Xᵀw − y) = 2Xε

and ε is the vector of prediction errors εi given by:

εi ≡ X iᵀw − yi.
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We also define the scalar ai ≡ X iᵀ∆G = 2X iᵀXε, which will simplify our formulas. Then we

take the derivative of the squared loss function with respect to η, evaluated at the updated

solution coefficient w − η∆G, and assign it equal to 0 to solve for the optimal η, yielding:

d

dη

m∑
i=1

(X iᵀ(w − η∆G)− yi)2 =
m∑
i=1

d

dη
(X iᵀw − ηX iᵀ∆G− yi)2

=
m∑
i=1

d

dη
(εi − ηai)2 = −2

m∑
i=1

(εi − ηai)ai = −2
m∑
i=1

εiai + 2η
m∑
i=1

a2
i = 0

Therefore, solving for the locally optimal η to minimize the loss, we have:

η =

∑m
i=1 εiai∑m
i=1 a

2
i

=

∑m
i=1 εiX

iᵀ∆G∑m
i=1 ∆GᵀX iX iᵀ∆G

=
εᵀXᵀ∆G

∆GᵀXXᵀ∆G

=
1

2

εᵀXᵀXε

εᵀXᵀXXᵀXε
=

1

2

εᵀKε

εᵀK2ε

where in a linear context K ≡ XᵀX. This leads to the locally optimal solution coefficient

update

wk = wk−1 − ηk−1∆G = wk−1 −
εᵀKε

εᵀK2ε
Xε.

We note that in the special case where εᵀKε ≡
∑m

i=1 εiai = 0, we get the locally optimal

step size η = 0, even if the denominator εᵀK2ε = 0 as well. This should be added to the

implementation of this algorithm as a special case.

We will now discuss the speed of Ridge Regression, and compare it to the speed of Im-

patient Learning.
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6.4 Ridge Regression Speed

How fast is Ridge Regression? When the complexity parameter λ of Ridge Regression is

fixed, the solution coefficients wλ can be solved for analytically, so the algorithm is usually

implemented using a linear solver to find the solution to:

(XXᵀ + λI)wλ = Xy, (6.3)

where X has one training point X i per column and one feature Xj per row, y is a column

vector of the training labels, and I is the identity matrix. Usually a column of 1’s is adding

to X to represent a constant term in our resulting linear equation.

The process of forming the matrix XXᵀ has running time on the order of mn2, where

m is the number of points and n is the number of features. Solving the linear equation of

Equation 6.3 using commonly applied methods has running time on the order of n3. This

leads to a total running time on the order of n2 max(n,m). When the number of features is

larger than the number of points, this running time can be improved by introducing a linear

version of the kernel matrix, defined in this case as K ≡ XᵀX. We write:

wλ = (XXᵀ + λI)−1Xy = X(XᵀX + λI)−1y = X(K + λI)−1y.

It takes time on the order of m2n to form the kernel matrix, and time on the order of

m3 to invert (K + λI) using typically applied methods. Hence, the total running time is

on the order of m2 max(n,m). Hence, when Ridge Regression is implemented with speed

in mind, forming XXᵀ when m ≥ n and forming K ≡ XᵀX when m < n, it has run-

ning time on the order of min(n2 max(n,m),m2 max(n,m)) = max(n,m) min(n,m)2. Since

max(n,m) min(n,m)2 > min(n,m)3 we are in trouble when min(n,m) is large. The worst
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case scenario is when m ≈ n which gives us a running time on the order of m3, which for some

applications will be unacceptably slow. For m = 5000, m3 is more than one hundred billion. In

the 3rd part of Figure 6.3 we see a comparison of the number of seconds to train Ridge Regres-

sion against this theoretical model on the randomly generated learning problems discussed in

Section 6.5, where for simplicity we only use the XXᵀ based Ridge Regression implementation.

Another source of slowness for Ridge Regression, as it is typically implemented, is in selection

of the λ parameter. Typically, one uses k-fold cross-validation to test a wide range of λ

values, selecting the one that yields the lowest out of sample error. This can significantly

slow our learning process, even though the slow down is only by a constant factor. Let us

consider a specific case where m > n. If we are using 10-fold cross-validation, we will have to

train 10 models, each on 90% of our data points, which will increase our training time by a

factor of approximately 9. If we are trying, say, 30 values of λ that exponentially increase

from 10−6 to 106, that will increase our training time by another factor of 30. In total, it will

take about 270 times longer to train this model than it does to train Ordinary Least Squares,

which may be unacceptably long. We could, of course, reduce the number of folds or the

number of λ values tried, but if the number of folds is too small or the grid for our lambda

values is not fine enough or does not span a wide enough range, we may make a poor choice

for λ. An alternative which can be faster is to use a method for approximating the k-fold

cross validation error or the leave one error error, such as the “Generalized Cross-Validation”

method (Golub et al., 1979), but we do not consider such approaches in this chapter.

6.5 Impatient Learning Speed

It is known that gradient descent is often a slow algorithm for function optimization, as it

is typically inefficient for computing a high number of decimal points of accuracy unless we
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have strong convexity of our objective function. With convexity, but not strong convexity, to

get an accuracy within A of the optimal value we need a number of iterations on the order of

1/A, whereas with strong convexity we only need iterations on the order of log(1/A) (Gordon

and Tibshirani, 2012). Strong convexity is sometimes lacking in least squares problems (e.g.

whenever the number of features is greater than the number of points, or when a feature is

duplicated), and even when it is satisfied, convergence may still be slow in practice if the

condition number is high, even though asymptotically the gap between the current solution

and the optimal solution falls exponentially fast.

Optimization algorithms have the goal of finding, to high precision, the input that maximizes

or minimizes the value of a function. Most machine learning algorithms can be recast as

optimization algorithms. Machine learning involves searching a given space of parameters

or functions to find one that minimizes an objective function. These observations naturally

point us in the direction of using optimization algorithms to solve machine learning problems,

which is widely done. However, the goals of mathematical optimization and machine learning

differ in two important ways:

1. Optimization algorithms try to efficiently find the input minimizing a function to many

digits of accuracy, whereas machine learning algorithms should try to efficiently find

a single input (e.g. parameter vector representing a hypothesis) that has close to

optimal out of sample prediction accuracy. Usually the latter does not require resolving

parameters to many digits of accuracy, and doing so wastes time. The seventh or even

fifth digit of our parameters is usually irrelevant in machine learning.

2. Optimization algorithms take for granted that the function they are minimizing is the

actual function one is trying to minimized, whereas in machine learning the objective

function is not actually the function one hopes to minimize. Empirical loss functions
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are defined over a finite sample of training data, and minimizing this function (i.e.

approaching producing zero loss) is generally undesirable, as it may imply substantial

overfitting. When a regularization term is added to correct the overfitting problem, the

objective function still does not directly measure the goal one hopes to achieve (i.e. out

of sample accuracy). Regularization merely serves as a convenient way of incorporating

a priori knowledge (such as a preference for small coefficients over large coefficients),

or of making our objective function more closely (but still imperfectly) representative

our actual goal. The fact that our training labels have random noise means that no

function of our training data will ever perfectly represent our true goal.

For these reasons using a method like gradient descent, which is known to be slow for

optimization, is not necessarily dumb in a machine learning context. The hope is that stopping

early makes this slow optimization algorithm into a fast machine learning algorithm. As we

have discussed, high precision is unnecessary in most machine learning applications, and in

fact is wasteful. By stopping as soon as further iterations are useless, the Impatient Learning

algorithm speeds up the gradient descent process, sometimes dramatically. Furthermore,

stopping early takes into account the fact that it is not the objective function per se that we

are truly interested in minimizing, but rather the generalization error. The objective function

is merely a proxy for this goal.

So how fast is linear Impatient Learning with a squared loss function? Examining Sec-

tion 6.3.0.1, we see that at each iteration we have to compute the point error vector

ε = Xᵀw − y and the update vector εᵀXᵀXε
εᵀ(XᵀX)2ε

Xε for each fold. If we perform this calculation

efficiently we will always be multiplying a matrix by a vector (never a matrix by a matrix) so

it can be done in time on the order of mn, which is the number of points times the number

of features. Hence, if I is the number of iterations, then the total running time for impatient
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learning is given by κmn I, where recall that κ is the number of folds. But how many

iterations does the algorithm take? Intuitively, the faster that overfitting begins to occur,

the sooner the algorithm will stop. Since higher levels of noise mean more overfitting, we

therefore would expect to find that Impatient Learning is faster when there is more noise,

which as we shall see, is indeed the case.

To empirically investigate the running time of Impatient Learning (with the squared error

loss function and locally optimal step size) as a function of the number of points, the number

of features and the label noise, we conduct experiments on synthetic linear learning problems.

The results are shown in Figures 6.2 and 6.3. For these experiments we generated 2241 linear

learning problems. Of these, 5 were removed due to Ridge Regression taking an excessively

long time to train for unknown reasons, leaving 2236 learning problems. Each used an

underlying linear model with each coefficient generated from an independent unit gaussian,

and a gaussian additive constant term. Additive gaussian noise was then added to each label.

Points were drawn independently from an isotropic gaussian (i.e. using unit variance and zero

correlation between features). The number of training points, number of training features, and

signal to noise ratio (of the noise added to the labels) for each learning problem were drawn

uniformly and independently at random from the ranges [50,3000], [20,500], and [0.0,1.0]

respectively. Impatient Learning with the squared error loss function and Ridge Regression

were both applied to each learning problem using 10-fold cross validation. Ridge Regression’s

10-fold cross-validation tested 30 lambda values spanning exponentially from 10−6 to 106. For

Impatient Learning, we used E = 0.000005, indicating that we would stop once an iteration

failed to improve the average out of sample error estimate by at least 0.0005%. There is little

reason to select E smaller than this, but an E that is 10 or even 100 times bigger can be chosen

for faster stopping in slow cases. Our usual recommendation is E = 0.0001. We chose a smaller

value for our empirical test cases simply so that we could explore how many iterations Im-
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patient Learning would take when there is very little restriction on its ability to converge fully.

The Impatient Learning algorithm typically finishes in remarkably few iterations on these

test cases. The median number of iterations was only 5, and the median absolute deviations

of the number of iterations was just 2. The minimum was 1 iteration, but there were many

large outliers, with the maximum being 900 iterations. The mean was 11.7, and the standard

deviation 38 due to these outliers. As can be seen in Figure 6.2, the number of features and

the number points seem to have little relationship to the average number of iterations, though

there are more extreme outliers in problems with smaller numbers of points or greater number

of features. There was a fairly strong relationship involving the noise to signal ratio N , which

is the standard deviation of the additive noise applied to the labels divided by the standard

deviation of the labels before noise is applied. We found that the number of iterations was

roughly related to 1√
N . In some cases, when the noise was very low a very large number of

iterations was used. This makes sense intuitively because when there is little noise machine

learning looks more like function optimization, since noise is a major cause of overfitting

and of why our objective function does not match our true goal. Without overfitting and

noise to worry about, grinding out many digits of accuracy in our optimization may actually

be beneficial, and so Impatient Learning starts to show its warts as an optimization algorithm.

In Figure 6.3 we can see that the total training seconds for Impatient Learning on these

synthetic cases is reasonably well modeled using a power of the quantity nm√
N . While the

power shown in the curve fit in the figure is less than 1, the curve appears to undershoot

somewhat for large values of the x-axis, so for large numbers of features and points may

actually be closer to 1. Note that a log-log plot is shown, meaning that monomials of the

form axb appear as straight lines.
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In our implementations of Impatient Learning and Ridge Regression the latter was gen-

erally much slower. The median of the ratio of the training times showed Ridge Regression

to be 8.25x slower, and Ridge Regression was slower in 99% of cases. These numbers are not

particularly telling though, since they will vary with the learning problem, as well as with

the details of how each algorithm is implemented and even the programming language used.

Overall though, our empirical investigations suggest that Impatient Learning is substantially

faster than Ridge Regression, and that the size of this benefit will be greater when there is

more noise, and when the number of points and features is large. It is worth also noting that

the variability of training time for Impatient Learning can be substantial. Depending on the

setting for E , the algorithm can occasionally run for many iterations with little gain, even

though it is usually fast and usually needs few iterations.

But what about the accuracy of Impatient Learning? While intuitively we expect it to

avoid overfitting due to the trick of estimating test set error after each iteration, it is not

obvious that the predictions it makes will be that similar to those of Ridge Regression, or

even that the accuracy will be similar. They both push the solution coefficients towards

zero (if we initialize θ∗ = ~0) relative to Ordinary Least Squares, but they do so in different ways.

On our synthetic test cases, we considered the R2 of Impatient Learning minus the R2

of Ridge Regression. The average of this quantity was -0.0033 with a median of -0.00040,

reflecting a slight average reduction in accuracy using Impatient Learning. The standard

deviation of this quantity was 0.012. We found that 72% of the time Ridge Regression was

more accurate, even though these accuracy differences were usually very small. When N

was small, Impatient Learning almost never outperformed Ridge Regression by a meaningful

amount, probably due to the “optimization like” nature of these cases, where high precision

has value. What’s more, as the number of points grew, the likelihood of large differences in
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performance between the two algorithms shrank considerably, and Impatient Learning seemed

to perform somewhat better relative to Ridge Regression in these cases as well compared to

when there were fewer points.

Overall, our empirical investigation suggests that Impatient Learning tends to be substantially

faster, but slightly less accurate than Ridge Regression, with Impatient Learning gaining

the biggest speed advantage when the number of points and features is large, and doing the

worst (along both the dimensions of speed and accuracy) when the label noise is low. Results

will, of course, vary from data set to data set, and what is true on these synthetic test cases

will not hold for all problems. But these results suggest that Impatient Learning can be a

desirable alternative to Ridge Regression when a small accuracy loss would be worth trading

for a large speed gain, assuming it is not a machine learning problem with low label noise. In

other words, Impatient Learning can be better than Ridge Regression when you are, well,

impatient.

6.5.1 Kernelizing Iterative Least Squares Regression

Let us now consider what happens when we kernelize Impatient Learning by applying a

vector valued transformation function φ to each data point X i, which gives us the matrix

Φ ≡ [φ(X i)]mi=1

with one transformed point per column. As we will see, this will lead to an extremely simple

formula that we can use for learning functions that are non-linear in the original variables.

We define the kernel (i.e. point similarity) function

K(X i, Xj) = φ(X i)ᵀφ(Xj)
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where we use the kernel matrix

K ≡ ΦᵀΦ = [φ(X i)ᵀφ(Xj)]mi=1,j=1.

This is a non-linear generalization of our previous definition for K. We consider a new point

x0 (represented as a column vector), which we would like to make a prediction for, and its

transformation by φ into our new space, which is given by

φ0 ≡ φ(x0).

Finally, we define the column vector of similarities between x0 and all the points X i as

~k0 ≡ φᵀ
0Φ = [K(x0, X

i)]mi=1.

Then, we will predict that the label for the point φ0 is y0 by applying Equation 6.2 to the

new features Φ instead of the original features X. By passing Φ from the right through to

the left, this yields:

y0 ≡ φᵀ
0

(
k∏
j=1

(I − 2ηk−jΦΦᵀ)

)
ΦΦᵀ(ΦΦᵀ)−1w0 + φᵀ

0

k∑
s=1

(
s−1∏
j=1

(I − 2ηk−jΦΦᵀ)

)
2ηk−s Φy

= ~kᵀ0

(
k∏
j=1

(I − 2ηk−jΦ
ᵀΦ)

)
Φᵀ(ΦΦᵀ)−1w0 + ~kᵀ0

k∑
s=1

(
s−1∏
j=1

(I − 2ηk−jΦ
ᵀΦ)

)
2ηk−s y

= ~kᵀ0

(
k∏
j=1

(I − 2ηk−jK)

)
u0 + ~kᵀ0

k∑
s=1

(
s−1∏
j=1

(I − 2ηk−jK)

)
2ηk−s y

= ~kᵀ0

((
k∏
j=1

(I − 2ηk−jK)

)
u0 +

k∑
s=1

(
s−1∏
j=1

(I − 2ηk−jK)

)
2ηk−s y

)
(6.4)
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≡ ~kᵀ0uk

where we have defined a new starting parameter vector

u0 ≡ Φᵀ(ΦΦᵀ)−1w0

which takes the place of our previous starting coefficients w0, and a corresponding kth

iteration of this vector given by uk.

The object uk reflects a new type of solution coefficient vector. Unlike wk which acts

on feature vectors (i.e. individual points) such as x0, instead uk acts on point similarity

vectors, like φ0, which measure how similar a point is to every other point. We now note

that the intermediate Expression 6.4 above for y0 is identical to Equation 6.2 once it has

been left multiplied by the point x0, except that Xy is now replaced with y, XXᵀ is now

replaced with K and x0 is now replaced with ~k0. Since wk satisfies the recurrence relation of

Equation 6.1, which is

wk = (I − 2ηk−1XX
ᵀ)wk−1 + 2ηk−1Xy

that immediately implies that

uk = (I − 2ηk−1K)uk−1 + 2ηk−1y.

Hence, we now know how to perform gradient descent on this problem in a kernelized fashion

to produce Kernelized Impatient Learning. We simply start with our best guess for our

solution coefficient vector, which is given by u0 (comparable to our previous w0), and then we

iterate according to the above formula for uk, which expresses it in terms of uk−1. Predictions
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are made by taking dot products with uk, not against points such as x0, but against vectors

of how similar each point is to every other point, such as ~k0 = [K(x0, X
i)]mi=1.

We note now that the recursive relationship for wk can also be better understood by writing

it as

wk = wk−1 − ηk−1(Dwk−1 − b) = wk−1 − 2ηk−1X(Xᵀwk−1 − y)

= wk−1 − 2ηk−1X~εk−1

where we define ~εk to be the vector of training set prediction errors (on each point X i) made

by the algorithm after iteration k. In other word, at each iteration, the algorithm is adjusting

wk−1 by the matrix X applied to the vector of errors made at each point, to produce wk. But

the recursive relationship for uk is even more intuitive. We have:

uk = (I − 2ηk−1K)uk−1 + 2ηk−1y

= uk−1 − 2ηk−1(Kuk−1 − y)

But since Kuk−1 is the vector of predictions for each point after k − 1 iterations, that means

that the vector of point prediction errors after k-1 iterations is given by ~εk−1 ≡ Kuk−1 − y.

Hence:

uk = uk−1 − 2ηk−1~εk−1.

So at each iteration, the kernelized form of the algorithm simply adds to the coefficients a

multiple of the prediction errors at the previous iteration! Hence, we have an extraordinary

simple implementation of the kernelized form of gradient descent for the squared error loss

function. We simply start at u0 and subtract a multiple of the error each time.
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We note that our final kernelized update formula only depends on the error, so despite

this derivation holding only in the case of the squared error loss function, one could simply

replace the definition of error by using a different loss function to compute ~ε, to produce a

different algorithm (though it would not necessarily correspond to the standard regression

objective function with that loss function, except in the squared error case). Finally, we note

that this form of the algorithm gives us a way of reducing the impact of outliers on the final

solution, should we choose to do so. The only way that a point can corrupt our coefficients

is if the corresponding entry of ~εk−1 is large. Hence, before subtracting a multiple of ~εk−1

from the coefficients, we can simply apply any 1-dimensional outlier removal algorithm to

the vector ~εk−1, and either assign 0 for any value deemed an outlier, or winsorize that value

so that it can’t be more than a fixed amount.

What is the locally optimal step size in the kernelized case? Well, we replace X with

Φ, and K ≡ ΦᵀΦ, so the locally optimal step size is still just

η =
1

2

εᵀKε

εᵀK2ε
.

and our complete update becomes

uk = uk−1 − 2ηk−1ε = uk−1 −
εᵀKε

εᵀK2ε
ε.

Hence, the formula for performing gradient descent based kernel regression with a squared

loss function is shockingly simple, even simpler than the standard linear case. The drawback

is that we can no longer avoid matrix to matrix multiplications as we could in the linear case.

We are forced to form the kernel matrix K all at once, which takes time on the order of nm2.
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6.6 Subsampling

The Impatient Learning approach has a natural extension to work with very large data

sets. Rather than computing the gradient from all points with each set Si, we could use

some random subsample of points from each Si (e.g. 1000 randomly selected points for each

gradient calculation). If the number of points is large enough, we should still expect to

produce a smooth and convex relationship between the validation error E and the number of

iterations, which is important for being able to easily select the appropriate stopping time.

But it is hard to know how large is large enough. When subsampling, an alternative variation

is to (when taking the gradient step) compute the optimal step size on both the subsample

of randomly selected points, as well as on the out of sample test set for that fold. We then

only take a step if the two step sizes agree in sign, and if they do, then the step size we

use is whichever has a smaller magnitude. This ensures that the fold test set error never

decreases, even if the the gradient calculations are not very accurate, which may happen in

high dimensions.

By choosing a subsample of points for gradient computation, we no longer have to load all

points in memory, allowing the possibility of working with files that are larger than available

RAM. What is more, we now gain some of the benefits of stochastic gradient descent (Gardner,

1984), in particular, if there are many redundant points they will no longer slow down our

processing time, and the algorithm may become much faster for large sample sizes.

6.7 Prior Knowledge

The Impatient Learning algorithm encodes a best guess of the solution coefficients, given

by θ∗, as the starting parameters. This can be thought of as a way of encoding prior
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knowledge about what the solution might be, or it can simply be set to θ∗ = 0 in cases where

no reasonable guess can be made. However, the Impatient Learning algorithm can also be

easily extended to encode other prior knowledge of the practitioner. Any linear equality or

inequality constraints on the parameter vector can be captured by projecting the gradient

onto these constraints before calculating the step size. So for instance if one has reason to

believe that certain coefficients are positive, or bounded, this knowledge can be encoded by

projecting the gradient accordingly. Doing so, however, may slow down convergence of the

algorithm.

6.8 Conclusion

We have defined Impatient Learning, a simple alternative to Ridge Regression based on a

k-fold cross-validated form of gradient descent with early stopping, which does not require

regularization. We have also derived a very simple formula for kernelizing Impatient Learning,

so that it can be applied to non-linear problems. Testing the linear form of Impatient Learning

empirically on linear synthetic cases, we found that it is generally substantially faster than

k-fold cross-validation based Ridge Regression, especially when the number of points and

features is large, though it is slightly less accurate, making it appropriate when the user is

impatient. In our tests, Impatient Learning performed its worst, both in terms of speed and

accuracy, when there was a low amount of label noise.

Impatient Learning has a handful of other advantages over the standard implementation of

Ridge Regression, beyond just speed. Its one free parameter is a single number E , which

can usually just be set to 0.0001, requiring no tuning. Ridge Regression, on the other hand,

requires a vector of λ values to test, which can be more difficult to choose appropriately. What

is more, Impatient Learning is easy to adapt to other differentiable, convex loss functions
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beyond just the squared loss, and to situations where there are linear constraints on the

coefficients, unlike the standard implementation of Ridge Regression. Finally, Impatient

Learning can easily be modified to use subsamples of the data for each gradient calculation,

so that it can be applied to extremely large data sets, even ones that do not fit in memory.
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Impatient Learning Convergence

Figure 6.1: Impatient Learning convergence when using a linear prediction function with squared error (i.e.
L2) loss function, trained on synthetic linear data with gaussian additive label noise and points drawn from
an isometric multi-variate gaussian. The blue bold line shows R2 for the Impatient Learning on an entirely
withheld test set, the dashed green line shows the total validation set error E (which is smooth and concave
as desired), the dashed-and-dotted purple line shows the in sample error made by the entire learner, and the
thin red horizontal line shows Ridge Regression performance (with automatic leave-one-out cross-validation
parameter selection), which is approached by the blue bold line as desired.
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Impatient Learning Number of Iterations

Figure 6.2: These charts show log plots of the number of iterations used by the Impatient Learning
algorithm with a linear prediction function and squared error loss function, trained on many synthetic data
sets, constructing from a linear model with random coefficients, gaussian additive label noise, and points
drawn from an isometric multi-variate gaussian. The number of training points, number of features, and
noise to signal ratio for the synthetic cases (which are used as the x-axes) were chosen at random in each
test case, so that these three variables are statistically independent. The red lines show “best fit” monomial
curves that were fit to the data, and the equations and R2 values for these curves is shown as well. Only the
top chart admits a meaningfully strong relationship.
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Impatient Learning and Ridge Regression Training Time

Figure 6.3: Using the same randomly sampled learning problems from Figure 6.2, these log-log plots show
(a) the number of training seconds for Impatient Learning vs. points times features, (b) the number of
training seconds for impatient Learning vs. points times features divided by the noise to signal ratio of the
additive label noise, and (c) the number of training seconds for Ridge Regression vs. points times the square
of features.
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Part IV

Theory
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Chapter 7

Relative Deviation and Unbounded

Loss Bounds

Our work in Chapters 3 and 4 on outliers points to an interesting theoretical question: if

extreme outliers can destroy the performance of algorithms like Ridge Regression, could just

the possibility of such outliers ruin our ability to prove that algorithms can learn effectively?

Examining common approaches to bounding the prediction error in terms of the training error

does not give one hope, since as we will see they generally assume bounded loss functions.

Worse still, this bound on the loss function generally enters into the resulting inequality, so if

it is too large, the inequalities derived may be vacuous.

Fortunately, this limitation is not fundamental. In this Chapter we investigate how one can

successfully analyze the ability of machine learning algorithms to generalize when a bounded

loss function cannot be assumed. Our approach, using relative deviation bounds, fills in a

number of gaps in existing proofs in the literature.

237



7.1 Introduction

Most generalization bounds in learning theory hold only for bounded loss functions. This

includes standard VC-dimension bounds (Vapnik, 1998), Rademacher complexity (Koltchinskii

and Panchenko, 2000a; Bartlett et al., 2002a; Koltchinskii and Panchenko, 2002; Bartlett and

Mendelson, 2002) or local Rademacher complexity bounds (Koltchinskii, 2006; Bartlett et al.,

2002b), as well as most other bounds based on other complexity terms. This assumption is

typically unrelated to the statistical nature of the problem considered but it is convenient

since when the loss functions are uniformly bounded, standard tools such as Hoeffding’s

inequality (Hoeffding, 1963; Azuma, 1967), McDiarmid’s inequality (McDiarmid, 1989), or

Talagrand’s concentration inequality (Talagrand, 1994) apply.

There are however natural learning problems where the boundedness assumption does

not hold. This includes unbounded regression tasks where the target labels are not uniformly

bounded, and a variety of applications such as sample bias correction (Dud́ık et al., 2006;

Huang et al., 2006; Cortes et al., 2008; Sugiyama et al., 2008; Bickel et al., 2007), domain

adaptation (Ben-David et al., 2007; Blitzer et al., 2008; Daumé III and Marcu, 2006; Jiang

and Zhai, 2007; Mansour et al., 2009; Cortes and Mohri, 2013), or the analysis of boosting

(Dasgupta and Long, 2003), where the importance weighting technique is used (Cortes et al.,

2010a). It is therefore critical to derive learning guarantees that hold for these scenarios and

the general case of unbounded loss functions.

When the class of functions is unbounded, a single function may take arbitrarily large

values with arbitrarily small probabilities. This is probably the main challenge in deriving

uniform convergence bounds for unbounded losses. This problem can be avoided by assuming

the existence of an envelope, that is a single non-negative function with a finite expectation

lying above the absolute value of the loss of every function in the hypothesis set (Dudley,

1984; Pollard, 1984; Dudley, 1987; Pollard, 1989; Haussler, 1992), an alternative assumption
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similar to Hoeffding’s inequality based on the expectation of a hyperbolic function, a quantity

similar to the moment-generating function, is used by Meir and Zhang (2003). However, in

many problems, e.g., in the analysis of importance weighting even for common distributions,

there exists no suitable envelope function (Cortes et al., 2010a). Instead, the second or some

other αth-moment of the loss seems to play a critical role in the analysis. Thus, instead, we

will consider here the assumption that some αth-moment of the loss functions is bounded as

in Vapnik (1998, 2006b).

This chapter presents in detail two-sided generalization bounds for unbounded loss

functions under the assumption that some αth-moment of the loss functions, α > 1, is

bounded. The proof of these bounds makes use of relative deviation generalization bounds

in binary classification, which we also prove and discuss in detail. Much of the results and

material we present is not novel and the chapter has therefore a survey nature. However, our

presentation is motivated by the fact that the proofs given in the past for these generalization

bounds were either incorrect or incomplete.

We now discuss in more detail prior results and proofs. One-side relative deviation bounds

were first given by Vapnik (1998), later improved by a constant factor by Anthony and

Shawe-Taylor (1993). These publications and several others have all relied on a lower bound

on the probability that a binomial random variable of m trials exceeds its expected value

when the bias verifies p > 1
m

. This also later appears in Vapnik (2006a) and implicitly in

other publications referring to the relative deviations bounds of Vapnik (1998). To the best

of our knowledge, no actual proof of this inequality was ever given in the past in the machine

learning literature before our recent work (Greenberg and Mohri, 2013). One attempt was

made to prove this lemma in the context of the analysis of some generalization bounds (Jaeger,

2005), but unfortunately that proof is not sufficient to support the general case needed for

the proof of the relative deviation bound of Vapnik (1998).

We present the proof of two-sided relative deviation bounds in detail using the recent
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results of Greenberg and Mohri (2013). The two-sided versions we present, as well as several

consequences of these bounds, appear in Anthony and Bartlett (1999). However, we could

not find a full proof of the two-sided bounds in any prior publication. Our presentation shows

that the proof of the other side of the inequality is not symmetric and cannot be immediately

obtained from that of the first side inequality. Additionally, this requires another proof

related to the binomial distributions given by Greenberg and Mohri (2013).

Relative deviation bounds are very informative guarantees in machine learning of inde-

pendent interest, regardless of the key role they play in the proof of unbounded loss learning

bounds. They lead to sharper generalization bounds whose right-hand side is expressed as

the interpolation of a O(1/m) term and a O(1/
√
m) term that admits as a multiplier the

empirical error or the generalization error. In particular, when the empirical error is zero,

this leads to faster rate bounds. We present in detail the proof of this type of results as well

as that of several others of interest (Anthony and Bartlett, 1999). Let us mention that, in

the form presented by Vapnik (1998), relative deviation bounds suffer from a discontinuity at

zero (zero denominator), a problem that also affects inequalities for the other side and which

seems not to have been rigorously treated by previous work. Our proofs and results explicitly

deal with this issue.

We use relative deviations bounds to give the full proofs of two-sided generalization

bounds for unbounded losses with finite moments of order α, both in the case 1 < α ≤ 2

and the case α > 2. One-sided generalization bounds for unbounded loss functions were first

given by Vapnik (1998, 2006b) under the same assumptions and also using relative deviations.

The one-sided version of our bounds for the case 1 < α ≤ 2 coincides with that of (Vapnik,

1998, 2006b) modulo a constant factor, but the proofs given by Vapnik in both books seem

to be incorrect.1 The core component of our proof is based on a different technique using

1In (Vapnik, 1998)[p.204-206], statement (5.37) cannot be derived from assumption (5.35), contrary to
what is claimed by the author, and in general it does not hold: the first integral in (5.37) is restricted to
a sub-domain and is thus smaller than the integral of (5.35). Furthermore, the main statement claimed in
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Hölder’s inequality. We also present some more explicit bounds for the case 1 < α ≤ 2 by

approximating a complex term appearing in these bounds. The one-sided version of the

bounds for the case α > 2 are also due to Vapnik (1998, 2006b) with similar questions

about the proofs.2 In that case as well, we give detailed proofs using the Cauchy-Schwarz

inequality in the most general case where a positive constant is used in the denominator to

avoid the discontinuity at zero. These learning bounds can be used directly in the analysis of

unbounded loss functions as in the case of importance weighting (Cortes et al., 2010a).

The remainder of this chapter is organized as follows. In Section 7.2, we briefly introduce

some definitions and notation used in the next sections. Section 7.3 presents in detail relative

deviation bounds as well as several of their consequences. Next, in Section 7.4 we present

generalization bounds for unbounded loss functions under the assumption that the moment

of order α is bounded first in the case 1 < α ≤ 2 (Section 7.4.1), then in the case α > 2

(Section 7.4.2).

7.2 Preliminaries

We consider an input space X and an output space Y, which in the particular case of

binary classification is Y = {−1,+1} or Y = {0, 1}, or a measurable subset of R in regression.

We denote by D a distribution over Z = X × Y. For a sample S of size m drawn from

Dm, we will denote by D̂ the corresponding empirical distribution, that is the distribution

corresponding to drawing a point from S uniformly at random. Throughout this chapter, H

denotes a hypothesis of functions mapping from X to Y. The loss incurred by hypothesis

Section (5.6.2) is not valid. In (Vapnik, 2006b)[p.200-202], the author invokes the Lagrange method to show
the main inequality, but the proof steps are not mathematically justified. Even with our best efforts, we
could not justify some of the steps and strongly believe the proof not to be correct. In particular, the way
function z is concluded to be equal to one over the first interval is suspicious and not rigorously justified.

2Several of the comments we made for the case 1 < α ≤ 2 hold here as well. In particular, the author’s
proof is not based on clear mathematical justifications. Some steps seem suspicious and are not convincing,
even with our best efforts to justify them.
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h ∈ H at z ∈ Z is denoted by L(h, z). L is assumed to be non-negative, but not necessarily

bounded. We denote by L(h) the expected loss or generalization error of a hypothesis h ∈ H

and by L̂S(h) its empirical loss for a sample S:

L(h) = E
z∼D

[L(h, z)] L̂S(h) = E
z∼D̂

[L(h, z)]. (7.1)

For any α > 0, we also use the notation Lα(h) = Ez∼D[Lα(h, z)] and L̂α(h) = Ez∼D̂[Lα(h, z)]

for the αth moments of the loss. When the loss L coincides with the standard zero-one loss

used in binary classification, we equivalently use the following notation

R(h) = E
z=(x,y)∼D

[1h(x)6=y] R̂S(h) = E
z=(x,y)∼D̂

[1h(x)6=y]. (7.2)

We will sometimes use the shorthand xm1 to denote a sample of m > 0 points (x1, . . . , xm) ∈

Xm. For any hypothesis set H of functions mapping X to Y = {−1,+1} or Y = {0, 1} and

sample xm1 , we denote by SH(xm1 ) the number of distinct dichotomies generated by H over

that sample and by Πm(H) the growth function:

SH(xm1 ) = Card
({

(h(x1), . . . , h(xm)) : h ∈ H
})

(7.3)

Πm(H) = max
xm1 ∈Xm

SH(xm1 ). (7.4)

7.3 Relative deviation bounds

In this section we prove a series of relative deviation learning bounds which we use in the

next section for deriving generalization bounds for unbounded loss functions. We will assume

throughout the chapter, as is common in much of learning theory, that each expression of the

form suph∈H [...] is a measurable function, which is not guaranteed when H is not a countable
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set. This assumption holds nevertheless in most common applications of machine learning.

We start with the proof of a symmetrization lemma (Lemma 9) originally presented by

Vapnik (1998), which is used by Anthony and Shawe-Taylor (1993). These publications and

several others have all relied on a lower bound on the probability that a binomial random

variable of m trials exceeds its expected value when the bias verifies p > 1
m

. To our knowledge,

no rigorous proof of this fact was ever provided in the literature in the full generality needed.

The proof of this result was recently given by Greenberg and Mohri (2013).

Lemma 8 (Greenberg and Mohri (2013)). Let X be a random variable distributed according

to the binomial distribution B(m, p) with m a positive integer (the number of trials) and

p > 1
m

(the probability of success of each trial). Then, the following inequality holds:

P
[
X ≥ E[X]

]
>

1

4
, (7.5)

where E[X] = mp.

The lower bound is never reached but is approached asymptotically when m = 2 as p→ 1
2

from the right.

Our proof of Lemma 9 is more concise than that of Vapnik (1998). Furthermore, our

statement and proof handle the technical problem of discontinuity at zero ignored by previous

authors. The denominator may in general become zero, which would lead to an undefined

result. We resolve this issue by including an arbitrary positive constant τ in the denominator

in most of our expressions.

For the proof of the following result, we will use the function F defined over (0,+∞)×

(0,+∞) by F : (x, y) 7→ x−y
α
√

1
2

[x+y+ 1
m

]
. By Lemma 12, F (x, y) is increasing in x and decreasing

in y.

Lemma 9. Let 1 < α ≤ 2. Assume that mε
α
α−1 > 1. Then, for any hypothesis set H and
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any τ > 0, the following holds:

PS∼Dm
[

sup
h∈H

R(h)− R̂S(h)
α
√
R(h) + τ

> ε

]
≤ 4PS,S′∼Dm

[
sup
h∈H

R̂S′(h)− R̂S(h)

α

√
1
2
[R̂S(h) + R̂S′(h) + 1

m
]
> ε

]
.

Proof. We give a concise version of the proof given by (Vapnik, 1998). We first show that

the following implication holds for any h ∈ H:

(
R(h)− R̂S(h)
α
√
R(h) + τ

> ε

)
∧
(
R̂S′(h) > R(h)

)
⇒ F (R̂S′(h), R̂S(h)) > ε. (7.6)

The first condition can be equivalently rewritten as R̂S(h) < R(h) − ε(R(h) + τ)
1
α , which

implies

R̂S(h) < R(h)− εR(h)
1
α and ε

α
α−1 < R(h), (7.7)

since R̂S(h) ≥ 0. Assume that the antecedent of the implication (7.6) holds for h ∈ H. Then,

in view of the monotonicity properties of function F (Lemma 12), we can write:

F (R̂S′(h), R̂S(h)) ≥ F (R(h), R(h)− εR(h)
1
α ) (R̂S′(h) > R(h) and 1st ineq. of (7.7))

=
R(h)− (R(h)− εR(h)

1
α )

α

√
1
2
[2R(h)− εR(h)

1
α + 1

m
]

≥ εR(h)
1
α

α

√
1
2
[2R(h)− ε

α
α−1 + 1

m
]

(2nd ineq. of (7.7))

>
εR(h)

1
α

α

√
1
2
[2R(h)]

= ε, (mε
α
α−1 > 1)

which proves (7.6). Now, by definition of the supremum, for any η > 0, there exists h0 ∈ H

such that

sup
h∈H

R(h)− R̂S(h)
α
√
R(h) + τ

− R(h0)− R̂S(h0)
α
√
R(h0) + τ

≤ η. (7.8)
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Using the definition of h0 and implication (7.6), we can write

PS,S′∼Dm
[

sup
h∈H

R̂S′(h)− R̂S(h)

α

√
1
2
[R̂S(h) + R̂S′(h) + 1

m
]
> ε

]

≥ PS,S′∼Dm
[

R̂S′(h0)− R̂S(h0)

α

√
1
2
[R̂S(h0) + R̂S′(h0) + 1

m
]
> ε

]
(by def. of sup)

≥ PS,S′∼Dm
[(

R(h0)− R̂S(h0)
α
√
R(h0) + τ

> ε

)
∧
(
RS′(h0) > R(h0)

)]
(implication (7.6))

= PS∼Dm
[
R(h0)− R̂S(h0)

α
√
R(h0) + τ

> ε

]
PS′∼Dm [RS′(h0) > R(h0)] (independence).

We now show that this implies the following inequality

PS,S′∼Dm
[

sup
h∈H

R̂S′(h)− R̂S(h)

α

√
1
2
[R̂S(h) + R̂S′(h) + 1

m
]
> ε

]
≥ 1

4
PS∼Dm

[
sup
h∈H

R(h)− R̂S(h)
α
√
R(h) + τ

> ε+ η

]
,

(7.9)

by distinguishing two cases. If R(h0) > ε
α
α−1 , since ε

α
α−1 > 1

m
, by Theorem 8 the inequality

PS′∼Dm [RS′(h0) > R(h0)] > 1
4

holds, which yields immediately (7.9). Otherwise we have

R(h0) ≤ ε
α
α−1 . Then, by (7.7), the condition R(h0)−R̂S(h0)

α
√
R(h0)+τ

> ε cannot hold for any sample

S ∼ Dm which by (7.8) implies that the condition suph∈H
R(h)−R̂S(h)
α
√
R(h)+τ

> ε+ η cannot hold for

any sample S ∼ Dm, in which case (7.9) trivially holds. Now, since (7.9) holds for all η > 0,

we can take the limit η → 0 and use the right-continuity of the cumulative distribution to

obtain

PS,S′∼Dm
[

sup
h∈H

R̂S′(h)− R̂S(h)

α

√
1
2
[R̂S(h) + R̂S′(h) + 1

m
]
> ε

]
≥ 1

4
PS∼Dm

[
sup
h∈H

R(h)− R̂S(h)
α
√
R(h) + τ

> ε

]
,

which completes the proof of Lemma 9.

Note that the factor of 4 in the statement of lemma 9 can be modestly improved by
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Figure 7.1: These plots depict P[X ≥ E[X]], the probability that a binomially distributed
random variable X exceeds its expectation, as a function of the trial success probability
p. The left plot shows only regions satisfying p > 1

m
whereas the right plot shows only

regions satisfying p > 2
m

. Each colored line corresponds to a different number of trials,
m = 2, 3, . . . , 14. The dashed horizontal line at 1

4
represents the value of the lower bound

used in the proof of lemma 9.

changing the condition assumed from ε
α
α−1 > 1

m
to ε

α
α−1 > k

m
for constant values of k > 1.

This leads to a slightly better lower bound on PS′∼Dm [RS′(h0) > R(h0)], e.g. 3.375 rather

than 4 for k = 2, at the expense of not covering cases where the number of samples m is less

than k

ε
α
α−1

. For some values of k, e.g. k = 2, covering these cases is not needed for the proof of

our main theorem (Theorem 11) though. However, this does not seem to simplify the critical

task of proving a lower bound on PS′∼Dm [RS′(h0) > R(h0)], that is the probability that a

binomial random variable B(m, p) exceeds its expected value when p > k
m

. One might hope

that restricting the range of p in this way would help simplify the proof of a lower bound on

the probability of a binomial exceeding its expected value. Unfortunately, our analysis of this

problem and proof (Greenberg and Mohri, 2013) suggest that this is not the case since the

regime where p is small seems to be the easiest one to analyze for this problem.

The result of Lemma 9 is a one-sided inequality. The proof of a similar result (Lemma 11)

with the roles of R(h) and R̂S(h) interchanged makes use of the following theorem.

Lemma 10 (Greenberg and Mohri (2013)). Let X be a random variable distributed according
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to the binomial distribution B(m, p) with m a positive integer and p < 1 − 1
m

. Then, the

following inequality holds:

P
[
X ≤ E[X]

]
>

1

4
, (7.10)

where E[X] = mp.

The proof of the following lemma (Lemma 11) is novel.3 While the general strategy of

the proof is similar to that of Lemma 9, there are some non-trivial differences due to the

requirement p < 1− 1
m

of Theorem 10. The proof is not symmetric as shown by the details

given below.

Lemma 11. Let 1 < α ≤ 2. Assume that mε
α
α−1 > 1. Then, for any hypothesis set H and

any τ > 0 the following holds:

PS∼Dm
[

sup
h∈H

R̂S(h)−R(h)

α

√
R̂S(h) + τ

> ε

]
≤ 4PS,S′∼Dm

[
sup
h∈H

R̂S′(h)− R̂S(h)

α

√
1
2
[R̂S(h) + R̂S′(h) + 1

m
]
> ε

]

Proof. Proceeding in a way similar to the proof of Lemma 9, we first show that the following

implication holds for any h ∈ H:

R̂S(h)−R(h)

α

√
R̂S(h) + τ

> ε

 ∧ (R(h) ≥ R̂S′(h)
)
⇒ F (R̂S(h), R̂S′(h)) > ε. (7.11)

The first condition can be equivalently rewritten as R(h) < R̂S(h)− ε(R̂S(h) + τ)
1
α , which

implies

R(h) < R̂S(h)− εR̂S(h)
1
α and ε

α
α−1 < R̂S(h), (7.12)

since R̂S(h) ≥ 0. Assume that the antecedent of the implication (7.11) holds for h ∈ H.

3A version of this lemma is stated in (Boucheron et al., 2005), but no proof is given.
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Then, in view of the monotonicity properties of function F (Lemma 12), we can write:

F (R̂S(h), R̂S′(h)) ≥ F (R̂S(h), R(h)) (R(h) ≥ R̂S′(h))

≥ F (R̂S(h), R̂S(h)− εR̂S(h)
1
α ) (1st ineq. of (7.12))

=
R̂S(h)− (R̂S(h)− εR̂S(h)

1
α )

α

√
1
2
[2R̂S(h)− εR̂S(h)

1
α + 1

m
]

≥ εR(h)
1
α

α

√
1
2
[2R(h)− ε

α
α−1 + 1

m
]

(2nd ineq. of (7.12))

>
εR(h)

1
α

α

√
1
2
[2R(h)]

= ε, (mε
α
α−1 > 1)

which proves (7.11). For the application of Theorem 10 to a hypothesis h, the condition

R(h) < 1 − 1
m

is required. Observe that this is implied by the assumptions R̂S(h) ≥ ε
α
α−1

and mε
α
α−1 > 1:

R(h) < R̂S(h)− ε α

√
R̂S(h) ≤ 1− ε ε

1
α−1 = 1− ε

α
α−1 < 1− 1

m
.

The rest of the proof proceeds nearly identically to that of Lemma 9.

In the statements of all the following results, the term Ex2m1 ∼D2m [SH(x2m
1 )] can be replaced

by the upper bound Π2m(H) to derive simpler expressions. By Sauer’s lemma (Sauer, 1972;

Vapnik and Chervonenkis, 1971), the VC-dimension d of the family H can be further used

to bound these quantities since Π2m(H) ≤
(

2em
d

)d
for d ≤ 2m. The first inequality of

the following theorem was originally stated and proven by Vapnik (1998, 2006b), later by

Anthony and Shawe-Taylor (1993) (in the special case α = 2) with a somewhat more favorable

constant, in both cases modulo the incomplete proof of the symmetrization and the technical

issue related to the denominator taking the value zero, as already pointed out. The second

inequality of the theorem and its proof are novel. Our proofs benefit from the improved
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analysis of Anthony and Shawe-Taylor (1993).

Theorem 11. For any hypothesis set H of functions mapping a set X to {0, 1}, and any

fixed 1 < α ≤ 2 and τ > 0, the following two inequalities hold:

PS∼Dm
[

sup
h∈H

R(h)− R̂S(h)
α
√
R(h) + τ

> ε

]
≤ 4 E[SH(x2m

1 )] exp

(
−m

2(α−1)
α ε2

2
α+2
α

)
PS∼Dm

[
sup
h∈H

R̂S(h)−R(h)

α

√
R̂S(h) + τ

> ε

]
≤ 4 E[SH(x2m

1 )] exp

(
−m

2(α−1)
α ε2

2
α+2
α

)
.

Proof. We first consider the case where mε
α
α−1 ≤ 1, which is not covered by Lemma 9. We

can then write

4E[SH(x2m
1 )] exp

[
−m

2(α−1)
α ε2

2
α+2
α

]
≥ 4E[SH(x2m

1 )] exp

[
−1

2
α+2
α

]
> 1,

for 1 < α ≤ 2. Thus, the bounds of the theorem hold trivially in that case. On the other hand,

when mε
α
α−1 ≥ 1, we can apply Lemma 9 and Lemma 11. Therefore, to prove theorem 11, it

is sufficient to work with the symmetrized expression suph∈H
R̂S′ (h)−R̂S(h)

α
√

1
2

[R̂S(h)+R̂S′ (h)+ 1
m

]
, rather than

working directly with our original expressions suph∈H
R(h)−R̂S(h)
α
√
R(h)+τ

and suph∈H
R̂(h)−RS(h)
α
√
R̂(h)+τ

. To

upper bound the probability that the symmetrized expression is larger than ε, we begin by

introducing a vector of Rademacher random variables σ = (σ1, σ2, . . . , σm), where the σi are

independent, identically distributed random variables each equally likely to take the value +1
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or −1. Using the shorthand x2m
1 for (x1, . . . , x2m), we can then write

PS,S′∼Dm
[

sup
h∈H

R̂S′(h)− R̂S(h)

α

√
1
2
[R̂S(h) + R̂S′(h) + 1

m
]
> ε

]

= Px2m1 ∼D2m

[
sup
h∈H

1
m

∑m
i=1(h(xm+i)− h(xi))

α

√
1

2m
[
∑m

i=1(h(xm+i) + h(xi)) + 1]
> ε

]

= Px2m1 ∼D2m,σ

[
sup
h∈H

1
m

∑m
i=1 σi(h(xm+i)− h(xi))

α

√
1

2m
[
∑m

i=1(h(xm+i) + h(xi)) + 1]
> ε

]

= E
x2m1 ∼D2m

[
Pσ

[
sup
h∈H

1
m

∑m
i=1 σi(h(xm+i)− h(xi))

α

√
1

2m
[
∑m

i=1(h(xm+i) + h(xi)) + 1]
> ε

∣∣∣∣x2m
1

]]
.

Now, for a fixed x2m
1 , we have Eσ

[
1
m

∑m
i=1 σi(h(xm+i)−h(xi))

α
√

1
2m

[
∑m
i=1(h(xm+i)+h(xi))+1]

]
= 0, thus, by Hoeffding’s

inequality, we can write

Pσ

 1
m

∑m
i=1 σi(h(xm+i)− h(xi))

α

√
1

2m
[
∑m

i=1(h(xm+i) + h(xi))]
> ε

∣∣∣∣x2m
1


≤ exp

(
−[
∑2m

i=1(h(xm+i) + h(xi)) + 1]
2
αm

2(α−1)
α ε2

2
α+2
α

∑m
i=1(h(xm+i)− h(xi))2

)
≤ exp

(
−[
∑2m

i=1(h(xm+i) + h(xi))]
2
αm

2(α−1)
α ε2

2
α+2
α

∑m
i=1(h(xm+i)− h(xi))2

)
.

Since the variables h(xi), i ∈ [1, 2m], take values in {0, 1}, we can write

m∑
i=1

(h(xm+i)− h(xi))
2 =

m∑
i=1

h(xm+i) + h(xi)− 2h(xm+i)h(xi)

≤
m∑
i=1

h(xm+i) + h(xi) ≤
[ m∑
i=1

h(xm+i) + h(xi)
] 2
α
,

where the last inequality holds since α ≤ 2 and the sum is either zero or greater than or
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equal to one. In view of this identity, we can write

Pσ

 1
m

∑m
i=1 σi(h(xm+i)− h(xi))

α

√
1

2m
[
∑m

i=1(h(xm+i) + h(xi))]
> ε

∣∣∣∣x2m
1

 ≤ exp

(
−m

2(α−1)
α ε2

2
α+2
α

)
.

We note now that the supremum over h ∈ H in the left-hand side expression in the statement

of our theorem need not be over all hypothesis in H: without changing its value, we can

replace H with a smaller hypothesis set where only one hypothesis remains for each unique

binary vector (h(x1), h(x2), . . . , h(x2m)). The number of such hypotheses is SH(x2m
1 ), thus,

by the union bound, the following holds:

Pσ

sup
h∈H

∑m
i=1 σi(h(xm+i)− h(xi))

α

√
1
2
[
∑m

i=1(h(xm+i) + h(xi))]
> ε

∣∣∣∣x2m
1

 ≤ SH(x2m
1 ) exp

(
−m

2(α−1)
α ε2

2
α+2
α

)
.

The result follows by taking expectations with respect to x2m
1 and applying Lemma 9 and

Lemma 11 respectively.

Corollary 5. Let 1 < α ≤ 2 and let H be a hypothesis set of functions mapping X to {0, 1}.

Then, for any δ > 0, each of the following two inequalities holds with probability at least 1− δ:

R(h)− R̂S(h) ≤ 2
α+2
2α

α
√
R(h)

√
logE[SH(x2m

1 )] + log 4
δ

m
2(α−1)
α

R̂(h)−RS(h) ≤ 2
α+2
2α

α

√
R̂(h)

√
logE[SH(x2m

1 )] + log 4
δ

m
2(α−1)
α

.

Proof. The result follows directly from Theorem 11 by setting δ to match the upper bounds

and taking the limit τ → 0.
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For α = 2, the inequalities become

R(h)− R̂S(h) ≤ 2

√
R(h)

logE[SH(x2m
1 )] + log 4

δ

m
(7.13)

R̂S(h)−R(h) ≤ 2

√
R̂(h)

logE[SH(x2m
1 )] + log 4

δ

m
, (7.14)

with the familiar dependency O
(√

log(m/d)
m/d

)
. The advantage of these relative deviations is

clear. For small values of R(h) (or R̂(h)) these inequalities provide tighter guarantees than

standard generalization bounds. Solving the corresponding second-degree inequalities in√
R(h) or

√
R̂(h) leads to the following results.

Corollary 6. Let 1 < α ≤ 2 and let H be a hypothesis set of functions mapping X to {0, 1}.

Then, for any δ > 0, each of the following two inequalities holds with probability at least 1− δ:

R(h) ≤ R̂S(h) + 2

√
R̂S(h)

logE[SH(x2m
1 )] + log 4

δ

m
+ 4

logE[SH(x2m
1 )] + log 4

δ

m

R̂S(h) ≤ R(h) + 2

√
R(h)

logE[SH(x2m
1 )] + log 4

δ

m
+ 4

logE[SH(x2m
1 )] + log 4

δ

m
.

Proof. The second-degree inequality corresponding to (7.13) can be written as

√
R(h)

2
− 2
√
R(h)u− R̂S(h) ≤ 0,

with u =

√
logE[SH(x2m1 )]+log 4

δ

m
, and implies

√
R(h) ≤ u+

√
u2 + R̂S(h). Squaring both sides
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gives:

R(h) ≤
[
u+

√
u2 + R̂S(h)

]2

= u2 + 2u

√
u2 + R̂S(h) + u2 + R̂S(h)

≤ u2 + 2u
(√

u2 +

√
R̂S(h)

)
+ u2 + R̂S(h)

= 4u2 + 2u

√
R̂S(h) + R̂S(h).

The second inequality can be proven in the same way from (7.14).

The learning bounds of the corollary make clear the presence of two terms: a term in

O(1/m) and a term in O(1/
√
m) which admits as a factor R̂S(h) or R(h) and which for small

values of these terms can be more favorable than standard bounds. Theorem 11 can also be

used to prove the following relative deviation bounds.

The following theorem and its proof assuming the result of Theorem 11 were given by

Anthony and Bartlett (1999).

Theorem 12. For all 0 < ε < 1, ν > 0, the following inequalities hold:

PS∼Dm
[

sup
h∈H

R(h)− R̂S(h)

R(h) + R̂(h) + ν
> ε

]
≤ 4E[SH(x2m

1 )] exp

(
−mνε2

2(1− ε2)

)
PS∼Dm

[
sup
h∈H

R̂S(h)−R(h)

R(h) + R̂(h) + ν
> ε

]
≤ 4E[SH(x2m

1 )] exp

(
−mνε2

2(1− ε2)

)
.

Proof. We prove the first statement, the proof of the second statement is identical modulo

the permutation of the roles of R(h) and R̂S(h). To do so, it suffices to determine ε′ > 0 such

that

PS∼Dm
[

sup
h∈H

R(h)− R̂S(h)

R(h) + R̂(h) + ν
> ε

]
≤ PS∼Dm

[
sup
h∈H

R(h)− R̂S(h)
α
√
R(h) + τ

> ε′
]
,

since we can then apply theorem 11 with α = 2 to bound the right-hand side and take the

limit as τ → 0 to eliminate the τ -dependence. To find such a choice of ε′, we begin by
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observing that for any h ∈ H,

R(h)− R̂S(h)

R(h) + R̂(h) + ν
≤ ε⇔ R(h) ≤ 1 + ε

1− ε
R̂S(h) +

ε

1− ε
ν. (7.15)

Assume now that R(h)−R̂S(h)√
R(h)+τ

≤ ε′ for some ε′ > 0, which is equivalent to R(h) ≤ R̂S(h) +

ε′
√
R(h) + τ . We will prove that this implies (7.15). To show that, we distinguish two cases,

R(h) + τ ≤ µ2ε′2 and R(h) + τ > µ2ε′2, with µ > 1. The first case implies the following:

R(h) + τ ≤ µ2ε′2 ⇒ R(h) ≤ R̂S(h) + ε′
√
µ2ε′2 ⇔ R(h) ≤ R̂S(h) + µε′2.

The second case R(h) + τ > µ2ε′2 is equivalent to ε′ <

√
R(h)+τ

µ
and implies

ε′ <

√
R(h) + τ

µ
⇒ R(h) ≤ R̂S(h) +

R(h) + τ

µ
⇔ R(h) ≤ µ

µ− 1
R̂S(h) +

τ

µ− 1
.

Observe now that since µ
µ−1

> 1, both cases imply

R(h) ≤ µ

µ− 1
R̂S(h) +

τ

µ− 1
+ µε′2. (7.16)

We now choose ε′ and µ to make (7.16) match (7.15) by setting µ
µ−1

= 1+ε
1−ε and τ

µ−1
+ µε′2 =

ε
1−εν, which gives:

µ =
1 + ε

2ε
ε′2 =

2ε2(ν − 2τ)

1− ε2
.

With these choices, the following inequality holds for all h ∈ H:

R(h)− R̂S(h)√
R(h) + τ

≤ ε′ ⇒ R(h)− R̂S(h)

R(h) + R̂(h) + ν
≤ ε,

which concludes the proof.
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The following corollary was given by Anthony and Bartlett (1999).

Corollary 7. For all ε > 0, v > 0, the following inequality holds:

PS∼Dm
[

sup
h∈H

R(h)− (1 + v)R̂S(h) > ε

]
≤ 4E[SH(x2m

1 )] exp

(
−mvε

4(1 + v)

)
.

Proof. Observe that

R(h)− R̂S(h)

R(h) + R̂(h) + ν
> ε⇔ R(h)− R̂S(h) > (R(h) + R̂(h) + ν)ε⇔ R(h) >

1 + ε

1− ε
R̂(h) +

εν

1− ε
.

To derive the statement of the corollary from that of Theorem 12, we identify 1+ε
1−ε with

1 + v, which gives ε(2 + v) = v, that is we choose ε = v
2+v

, and similarly identify εν
1−ε with

ε′, that is ε′ =
v

2+v
2

2+v

ν = v
2
ν, thus we choose ν = 2

v
ε′. With these choices of ε′ and ν, the

coefficient in the exponential appearing in the bounds of Theorem 12 can be rewritten as

follows: vε2

2(1−ε2)
= 2ε′

2v

v2

(2+v)2

4v+4

(2+v)2
= ε′

v
v2

4(v+1)
= ε′v

4(v+1)
, which concludes the proof.

The result of Corollary 7 is remarkable since it shows that a fast convergence rate of

O(1/m) can be achieved provided that we settle for a slightly larger value than the empirical

error, one differing by a fixed factor (1 + v). The following is an immediate corollary when

R̂S(h) = 0, where we take v →∞.

Corollary 8. For all ε > 0, v > 0, the following inequality holds:

PS∼Dm
[
∃h ∈ H : R(h) > ε ∧ R̂S(h) = 0

]
≤ 4E[SH(x2m

1 )] exp

(
−mε

4

)
.

This is the familiar fast rate convergence result for separable cases.
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7.4 Generalization bounds for unbounded losses

In this section we will make use of the relative deviation bounds given in the previous

section to prove generalization bounds for unbounded loss functions under the assumption

that the moment of order α of the loss is bounded. We will start with the case 1 < α ≤ 2

and then move on to considering the case when α > 2. As already indicated earlier, the

one-sided version of the results presented in this section were given by Vapnik (1998) with

slightly different constants, but the proofs do not seem to be correct or complete. The second

statements in all these results (other side of the inequality) are new. Our proofs for both sets

of results are new.

7.4.1 Bounded moment with 1 < α ≤ 2

Our first theorem reduces the problem of deriving a relative deviation bound for an

unbounded loss function with Lα(h) = Ez∼D[L(h, z)α] < +∞ for all h ∈ H, to that of relative

deviation bound for binary classification. To simplify the presentation of the results, in what

follows we will use the shorthand P[L(h, z) > t] instead of Pz∼D[L(h, z) > t], and similarly

P̂[L(h, z) > t] instead of Pz∼D̂[L(h, z) > t].

Theorem 13. Let 1 < α ≤ 2, 0 < ε ≤ 1, and 0 < τ
α−1
α < ε

α
α−1 . For any loss function L

(not necessarily bounded) and hypothesis set H such that Lα(h) < +∞ for all h ∈ H, the

following two inequalities hold:

P
[

sup
h∈H

L(h)− L̂S(h)
α
√
Lα(h) + τ

> Γ(α, ε) ε

]
≤ P

[
sup

h∈H,t∈R

P[L(h, z) > t]− P̂[L(h, z) > t]
α
√
P[L(h, z) > t] + τ

> ε

]
P
[

sup
h∈H

L(h)− L̂S(h)
α
√
Lα(h) + τ

> Γ(α, ε) ε

]
≤ P

[
sup

h∈H,t∈R

P̂[L(h, z) > t]− P[L(h, z) > t]

α

√
P̂[L(h, z) > t] + τ

> ε

]
,

with Γ(α, ε) = α−1
α

(1 + τ)
1
α + 1

α

(
α
α−1

)α−1
(1 +

(
α−1
α

)α
τ

1
α )

1
α

[
1 + log(1/ε)(

α
α−1

)α−1

]α−1
α

.
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Proof. We prove the first statement. The second statement can be shown in a very similar

way. Fix 1 < α ≤ 2 and ε > 0 and assume that for any h ∈ H and t ≥ 0, the following holds:

P[L(h, z) > t]− P̂[L(h, z) > t]
α
√
P[L(h, z) > t] + τ

≤ ε. (7.17)

We show that this implies that for any h ∈ H, L(h)−L̂S(h)
α
√
Lα(h)+τ

≤ Γ(α, ε)ε. By the properties of the

Lebesgue integral, we can write

L(h) = E
z∼D

[L(h, z)] =

∫ +∞

0

P[L(h, z) > t] dt

L̂(h) = E
z∼D̂

[L(h, z)] =

∫ +∞

0

P̂[L(h, z) > t] dt,

and, similarly,

Lα(h) = Lα(h) =

∫ +∞

0

P[Lα(h, z) > t] dt =

∫ +∞

0

αtα−1P[L(h, z) > t] dt.

In what follows, we use the notation Iα = Lα(h)+τ . Let t0 = sI
1
α
α and t1 = t0

[
1
ε

] 1
α−1 for s > 0.

To bound L(h)− L̂(h), we simply bound P[L(h, z) > t]− P̂[L(h, z) > t] by P[L(h, z) > t] for

large values of t, that is t > t1, and use inequality (7.17) for smaller values of t:

L(h)− L̂(h) =

∫ +∞

0

P[L(h, z) > t]− P̂[L(h, z) > t] dt

≤
∫ t1

0

ε α
√

P[L(h, z) > t] + τ dt+

∫ +∞

t1

P[L(h, z) > t] dt.
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For relatively small values of t, P[L(h, z) > t] is close to one. Thus, we can write

L(h)− L̂(h) ≤
∫ t0

0

ε α
√

1 + τ dt+

∫ t1

t0

ε α
√

P[L(h, z) > t] + τ dt+

∫ +∞

t1

P[L(h, z) > t]dt

=

∫ +∞

0

f(t)g(t) dt,

with

f(t) =


γ1I

α−1

α2
α ε α

√
1 + τ if 0 ≤ t ≤ t0

γ2 [αtα−1(P[L(h, z) > t] + τ)]
1
α ε if t0 < t ≤ t1

γ2 [αtα−1P[L(h, z) > t]]
1
α ε if t1 < t.

g(t) =



1

γ1I

α−1
α2
α

if 0 ≤ t ≤ t0

1

γ2(αtα−1)
1
α

if t0 < t ≤ t1

P[L(h,z)>t]
α−1
α

γ2(αtα−1)
1
α

1
ε

if t1 < t,

where γ1, γ2 are positive parameters that we shall select later. Now, since α > 1, by Hölder’s

inequality,

L(h)− L̂(h) ≤
[∫ +∞

0

f(t)α dt

] 1
α
[∫ +∞

0

g(t)
α
α−1 dt

]α−1
α

.

The first integral on the right-hand side can be bounded as follows:

∫ +∞

0

f(t)α dt =

∫ t0

0

(1 + τ)(γ1I
α−1

α2
α ε)α dt+ γα2 ε

ατ

∫ t1

t0

αtα−1dt+ γα2

∫ +∞

t0

αtα−1P[L(h, z) > t]εα dt

≤ (1 + τ)γα1 I
α−1
α

α t0ε
α + γα2 ε

ατ(tα1 − tα0 ) + γα2 ε
αIα

≤ (γα1 (1 + τ)s+ γα2 (1 + sα(1/ε)
α
α−1 τ))εαIα

≤ (γα1 (1 + τ)s+ γα2 (1 + sατ
1
α ))εαIα.
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Since t1/t0 = (1/ε)
1

α−1 , the second one can be computed and bounded following

∫ +∞

0

g(t)
α
α−1 dt =

∫ t0

0

dt

γ
α
α−1

1 I
1
α
α

+

∫ t1

t0

1

γ
α
α−1

2 α
1

α−1

dt

t
+

∫ +∞

t1

P[L(h, z) > t]

γ
α
α−1

2 α
1

α−1 ε
α
α−1 t

dt

=
s

γ
α
α−1

1

+
1

γ
α
α−1

2 (α− 1)α
1

α−1

log
1

ε
+

∫ +∞

t1

αtα−1P[L(h, z) > t]

γ
α
α−1

2 (αε)
α
α−1 tα

dt

≤ s

γ
α
α−1

1

+
1

γ
α
α−1

2 (α− 1)α
1

α−1

log
1

ε
+

∫ +∞

t1

αtα−1P[L(h, z) > t]

γ
α
α−1

2 (αε)
α
α−1 tα1

dt

≤ s

γ
α
α−1

1

+
1

γ
α
α−1

2 (α− 1)α
1

α−1

log
1

ε
+

Iα

γ
α
α−1

2 (αε)
α
α−1 sαIα(1

ε
)

α
α−1

=
s

γ
α
α−1

1

+
1

γ
α
α−1

2

(
1

(α− 1)α
1

α−1

log
1

ε
+

1

α
α
α−1 sα

)
.

Combining the bounds obtained for these integrals yields directly

L(h)− L̂(h)

≤
[
(γα1 (1 + τ)s+ γα2 (1 + sατ

1
α ))εαIα

] 1
α

[
s

γ
α
α−1

1

+
1

γ
α
α−1

2

(
1

(α− 1)α
1

α−1

log
1

ε
+

1

α
α
α−1 sα

)]α−1
α

= (γα1 (1 + τ)s+ γα2 (1 + sατ
1
α ))

1
α

[
s

γ
α
α−1

1

+
1

γ
α
α−1

2

(
1

(α− 1)α
1

α−1

log
1

ε
+

1

α
α
α−1 sα

)]α−1
α

εI
1
α
α .

Observe that the expression on the right-hand side can be rewritten as ‖u‖α‖v‖ α
α−1

εI
1
α
α where

the vectors u and v are defined by u = (γ1(1 + τ)
1
α s

1
α , γ2(1 + sατ

1
α )

1
α ) and v = (v1, v2) =(

s
α−1
α

γ1
, 1
γ2

[
1

(α−1)α
1

α−1
log 1

ε
+ 1

α
α
α−1 sα

]α−1
α

)
. The inner product u · v does not depend on γ1

and γ2 and by the properties of Hölder’s inequality can be reached when u and the vector

v′ = (v
1

α−1

1 , v
1

α−1

2 ) are collinear. γ1 and γ2 can be chosen so that det(u,v′) = 0, since this

condition can be rewritten as

s
1
α (1 + τ)

1
α
γ1

γ
1

α−1

2

[ 1

(α− 1)α
1

α−1

log
1

ε
+

1

α
α
α−1 sα

] 1
α − s

1
α (1 + sατ

1
α )

1
α
γ2

γ
1

α−1

1

= 0, (7.18)

259



or equivalently,

(
γ1

γ2

) α
α−1 [ 1

(α− 1)α
1

α−1

log
1

ε
+

1

α
α
α−1 sα

] 1
α − (1 + sατ

1
α )

1
α = 0. (7.19)

Thus, for such values of γ1 and γ2, the following inequality holds:

L(h)− L̂(h) ≤ (u · v) εI
1
α
α = f(s) εI

1
α
α ,

with

f(s) = (1 + τ)
1
α s+ (1 + sατ

1
α )

1
α

[ 1

(α− 1)α
1

α−1

log
1

ε
+

1

α
α
α−1 sα

]α−1
α

= (1 + τ)
1
α s+

(1 + sατ
1
α )

1
α

α

[ α

(α− 1)
log

1

ε
+

1

sα

]α−1
α
.

Setting s = α−1
α

yields the statement of the theorem.

The next corollary follows immediately by upper bounding the right-hand side of the

learning bounds of theorem 13 using theorem 11. It provides learning bounds for unbounded

loss functions in terms of the growth functions in the case 1 < α ≤ 2.

Corollary 9. Let ε < 1, 1 < α ≤ 2, and 0 < τ
α−1
α < ε

α
α−1 . For any loss function L (not

necessarily bounded) and hypothesis set H such that Lα(h) < +∞ for all h ∈ H, the following

inequalities hold:

P
[

sup
h∈H

L(h)− L̂(h)
α
√
Lα(h) + τ

> Γ(α, ε)ε

]
≤ 4 E[SQ(z2m

1 )] exp

(
−m

2(α−1)
α ε2

2
α+2
α

)
P
[

sup
h∈H

L̂(h)− L(h)

α

√
L̂α(h) + τ

> Γ(α, ε)ε

]
≤ 4 E[SQ(z2m

1 )] exp

(
−m

2(α−1)
α ε2

2
α+2
α

)
,

where Q is the set of functions Q = {z 7→ 1L(h,z)>t | h ∈ H, t ∈ R}, and Γ(α, ε) =

260



α−1
α

(1 + τ)
1
α + 1

α

(
α
α−1

)α−1
(1 +

(
α−1
α

)α
τ

1
α )

1
α

[
1 + log(1/ε)(

α
α−1

)α−1

]α−1
α

.

The following corollary gives the explicit result for α = 2.

Corollary 10. Let ε < 1 and 0 < τ < ε4. For any loss function L (not necessarily bounded)

and hypothesis set H such that L2(h) < +∞ for all h ∈ H, the following inequalities hold:

P
[

sup
h∈H

L(h)− L̂(h)√
L2(h) + τ

> Γ(2, ε)ε

]
≤ 4 E[SQ(z2m

1 )] exp

(
−mε2

4

)
P
[

sup
h∈H

L̂(h)− L(h)√
L̂2(h) + τ

> Γ(2, ε)ε

]
≤ 4 E[SQ(z2m

1 )] exp

(
−mε2

4

)
,

with Γ(2, ε) =
(√

1+τ
2

+
√

1 + 1
4

√
τ
√

1 + 1
2

log 1
ε

)
and Q the set of functions Q = {z 7→

1L(h,z)>t | h ∈ H, t ∈ R}.

Corollary 11. Let L be a loss function (not necessarily bounded) and H a hypothesis set

such that L2(h) < +∞ for all h ∈ H. Then, for any δ > 0, with probability at least 1 − δ,

each of the following inequalities holds for all h ∈ H:

L(h) ≤ L̂S(h) + 2
√
L2(h)

√
2 logE[SQ(z2m

1 )] + log 1
δ

m
Γ0

(
2, 2

√
2 logE[SQ(z2m

1 )] + log 1
δ

m

)

L̂S(h) ≤ L(h) + 2

√
L̂2(h)

√
2 logE[SQ(z2m

1 )] + log 1
δ

m
Γ0

(
2, 2

√
2 logE[SQ(z2m

1 )] + log 1
δ

m

)
,

where Q is the set of functions Q = {z 7→ 1L(h,z)>t | h ∈ H, t ∈ R} and Γ0(2, ε) =

1
2

+
√

1 + 1
2

log 1
ε
.

Proof. For any ε > 0, let f(ε) = Γ0(2, ε)ε. Then, by Corollary 10,

P
[

sup
h∈H

L(h)− L̂(h)√
L2(h) + τ

> ε

]
≤ 4 E[SQ(z2m

1 )] exp

(
−m[f−1(ε)]2

4

)
.
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Setting the right-hand side to ε and using inversion yields immediately the first inequality.

The second inequality is proven in the same way.

Observe that, modulo the factors in Γ0, the bounds of the corollary admit the standard

(1/
√
m) dependency and that the factors in Γ0 are only logarithmic in m.

7.4.2 Bounded moment with α > 2

This section gives two-sided generalization bounds for unbounded losses with finite

moments of order α, with α > 2. As for the case 1 < α < 2, the one-sided version of our

bounds coincides with that of Vapnik (1998, 2006b) modulo a constant factor, but, here

again, the proofs given by Vapnik in both books seem to be incorrect.

Proposition 1. Let α > 2. For any loss function L (not necessarily bounded) and hypothesis

set H such that 0 < Lα(h) < +∞ for all h ∈ H, the following two inequalities hold:

∫ +∞

0

√
P[L(h, z) > t]dt ≤ Ψ(α) α

√
Lα(h) and

∫ +∞

0

√
P̂[L(h, z) > t]dt ≤ Ψ(α)

α

√
L̂α(h),

where Ψ(α) =
(

1
2

) 2
α
(

α
α−2

)α−1
α .

Proof. We prove the first inequality. The second can be proven in a very similar way. Fix

α > 2 and h ∈ H. As in the proof of Theorem 13, we bound P[L(h, z) > t] by 1 for t close to

0, say t ≤ t0 for some t0 > 0 that we shall later determine. We can write

∫ +∞

0

√
P[L(h, z) > t]dt ≤

∫ t0

0

1dt+

∫ +∞

t0

√
P[L(h, z) > t]dt =

∫ +∞

0

f(t)g(t)dt,
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with functions f and g defined as follows:

f(t) =


γI

α−1
2α
α if 0 ≤ t ≤ t0

α
1
2 t

α−1
2 P[L(h, z) > t]

1
2 if t0 < t.

g(t) =


1

γI
α−1
2α
α

if 0 ≤ t ≤ t0

1

α
1
2 t
α−1
2

if t0 < t,

where Iα = Lα(h) and where γ is a positive parameter that we shall select later. By the

Cauchy-Schwarz inequality,

∫ +∞

0

√
P[L(h, z) > t]dt ≤

(∫ +∞

0

f(t)2dt

) 1
2
(∫ +∞

0

g(t)2dt

) 1
2

.

Thus, we can write

∫ +∞

0

√
P[L(h, z) > t]dt

≤
(
γ2I

α−1
α

α t0 +

∫ +∞

t0

αtα−1P[L(h, z) > t]dt

) 1
2

(
t0

γ2I
α−1
α

α

+

∫ +∞

t0

1

αtα−1
dt

) 1
2

≤
(
γ2I

α−1
α

α t0 + Iα

) 1
2

(
t0

γ2I
α−1
α

α

+
1

α(α− 2)tα−2
0

) 1
2

.

Introducing t1 with t0 = I
1/α
α t1 leads to

∫ +∞

0

√
P[L(h, z) > t]dt ≤

(
γ2Iαt1 + Iα

) 1
2

(
t1

γ2I
α−2
α

α

+
1

α(α− 2)tα−2
1 I

α−2
α

α

) 1
2

≤
(
γ2t1 + 1

) 1
2

(
t1
γ2

+
1

α(α− 2)tα−2
1

) 1
2

I
1
α
α .

We now seek to minimize the expression (γ2t1 + 1)
1
2

(
t1
γ2

+ 1
α(α−2)tα−2

1

) 1
2
, first as a function of

γ. This expression can be viewed as the product of the norms of the vectors u = (γt
1
2
1 , 1) and

v = (
t
1
2
1

γ
, 1√

α(α−2)t
α−2
2

1

), with a constant inner product (not depending on γ). Thus, by the
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properties of the Cauchy-Schwarz inequality, it is minimized for collinear vectors and in that

case equals their inner product:

u · v = t1 +
1√

α(α− 2)t
α−2
2

1

.

Differentiating this last expression with respect to t1 and setting the result to zero gives the

minimizing value of t1: ( 2
α−2

√
α(α− 2))−

2
α =

(
1
2

√
α−2
α

) 2
α

. For that value of t1,

u · v =

(
1 +

2

α− 2

)
t1 =

α

α− 2

(
1

2

√
α− 2

α

) 2
α

=

(
1

2

) 2
α
(
α− 2

α

) 1−α
α

,

which concludes the proof.

Theorem 14. Let α > 2, 0 < ε ≤ 1, and 0 < τ ≤ ε2. Then, for any loss function L (not

necessarily bounded) and hypothesis set H such that Lα(h) < +∞ and L̂α(h) < +∞ for all

h ∈ H, the following two inequalities hold:

P
[

sup
h∈H

L(h)− L̂(h)
α
√
Lα(h) + τ

> Λ(α)ε

]
≤ P

[
sup

h∈H,t∈R

P[L(h, z) > t]− P̂[L(h, z) > t]√
P[L(h, z) > t] + τ

> ε

]

P
[

sup
h∈H

L̂(h)− L(h)

α

√
L̂α(h) + τ

> Λ(α)ε

]
≤ P

[
sup

h∈H,t∈R

P̂[L(h, z) > t]− P[L(h, z) > t]√
P̂[L(h, z) > t] + τ

> ε

]
,

where Λ(α) =
(

1
2

) 2
α
(

α
α−2

)α−1
α + α

α−1
τ
α−2
2α .

Proof. We prove the first statement since the second one can be proven in a very similar

way. Assume that suph,t
P[L(h,z)>t]−P̂[L(h,z)>t]√

P[L(h,z)>t]+τ
≤ ε. Fix h ∈ H, let J =

∫ +∞
0

√
P [L(h, z) > t] dt

and ν = Lα(h). By Markov’s inequality, for any t > 0, P[L(h, z) > t] = P[Lα(h, z) > tα] ≤
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Lα(h)
tα

= ν
tα

. Using this inequality, for any t0 > 0, we can write

L(h)− L̂(h) =

∫ +∞

0

(P[L(h, z) > t]− P̂[L(h, z) > t]) dt

=

∫ t0

0

(P[L(h, z) > t]− P̂[L(h, z) > t]) dt+

∫ +∞

t0

(P[L(h, z) > t]− P̂[L(h, z) > t]) dt

≤ ε

∫ t0

0

√
P[L(h, z) > t] + τ dt+

∫ +∞

t0

P[L(h, z) > t] dt

≤ ε

∫ t0

0

(
√

P[L(h, z) > t] +
√
τ) dt+

∫ +∞

t0

ν

tα
dt

≤ εJ + ε
√
τt0 +

ν

(α− 1)tα−1
0

.

Choosing t0 to minimize the right-hand side yields t0 =
(

ν
ε
√
τ

) 1
α and gives

L(h)− L̂(h) ≤ εJ +
α

α− 1
ν

1
α (ε
√
τ)

α−1
α .

Since τ ≤ ε2, (ε
√
τ)

α−1
α = [ετ

1
2(α−1) τ

α−2
2(α−1) ]

α−1
α ≤ [εε

1
(α−1) τ

α−2
2(α−1) ]

α−1
α = ετ

α−2
2α . Thus, by

Proposition 1, the following holds:

L(h)− L̂(h)
α
√
Lα(h) + τ

≤ εΨ(α)
ν

1
α

(ν + τ)
1
α

+
α

α− 1
ετ

α−2
2α

ν
1
α

(ν + τ)
1
α

≤ εΨ(α) +
α

α− 1
ετ

α−2
2α ,

which concludes the proof.

Combining Theorem 14 with Theorem 11 leads immediately to the following two results.

Corollary 12. Let α > 2, 0 < ε ≤ 1, and 0 < τ ≤ ε2. Then, for any loss function L (not

necessarily bounded) and hypothesis set H such that Lα(h) < +∞ and L̂α(h) < +∞ for all
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h ∈ H, the following two inequalities hold:

P
[

sup
h∈H

L(h)− L̂(h)
α
√
Lα(h) + τ

> Λ(α)ε

]
≤ 4 E[SQ(z2m

1 )] exp

(
−mε2

4

)
P
[

sup
h∈H

L̂(h)− L(h)

α

√
L̂α(h) + τ

> Λ(α)ε

]
≤ 4 E[SQ(z2m

1 )] exp

(
−mε2

4

)
,

where Λ(α) =
(

1
2

) 2
α
(

α
α−2

)α−1
α + α

α−1
τ
α−2
2α and where Q is the set of functions Q = {z 7→

1L(h,z)>t | h ∈ H, t ∈ R}.

In the following result, Pdim(G) denotes the pseudo-dimension of a family of real-valued

functions G (Pollard, 1984, 1989; Vapnik, 1998), which coincides with the VC-dimension of

the corresponding thresholded functions:

Pdim(G) = VCdim
({

(x, t) 7→ 1(g(x)−t)>0 : g ∈ G
})

. (7.20)

Corollary 13. Let α > 2, 0 < ε ≤ 1. Let L be a loss function (not necessarily bounded)

and H a hypothesis set such that Lα(h) < +∞ for all h ∈ H, and d = Pdim({z 7→ L(h, z) |

h ∈ H}) < +∞. Then, for any δ > 0, with probability at least 1− δ, each of the following

inequalities holds for all h ∈ H:

L(h) ≤ L̂(h) + 2Λ(α) α
√
Lα(h)

√
d log 2em

d
+ log 4

δ

m

L̂(h) ≤ L(h) + 2Λ(α)
α

√
L̂α(h)

√
d log 2em

d
+ log 4

δ

m

where Λ(α) =
(

1
2

) 2
α
(

α
α−2

)α−1
α .
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7.5 Conclusion

We presented a series of results for relative deviation bounds used to prove generalization

bounds for unbounded loss functions. These learning bounds can be used in a variety of

applications to deal with the more general unbounded case. The relative deviation bounds

are of independent interest and can be further used for a sharper analysis of guarantees in

binary classification and other tasks.

7.6 Lemmas in support of Section 7.3

Lemma 12. Let 1 < α ≤ 2 and for any η > 0, let f : (0,+∞)× (0,+∞)→ R be the function

defined by f : (x, y) 7→ x−y
α
√
x+y+η

. Then, f is a strictly increasing function of x and a strictly

decreasing function of y.

Proof. f is differentiable over its domain of definition and for all (x, y) ∈ (0,+∞)× (0,+∞),

∂f

∂x
(x, y) =

(x+ y + η)
1
α − x−y

α
(x+ y + η)

1
α
−1

(x+ y + η)
2
α

=
α−1
α
x+ α+1

α
y + η

(x+ y + η)1+ 1
α

> 0

∂f

∂y
(x, y) =

−(x+ y + η)
1
α − x−y

α
(x+ y + η)

1
α
−1

(x+ y + η)
2
α

= −
α+1
α
x+ α−1

α
y + η

(x+ y + η)1+ 1
α

< 0.
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Chapter 8

Tight lower bound on the probability

of a binomial exceeding its

expectation

As discussed in Chapter 7, proofs, which apply relative deviation bounds to demonstrate

the generalization ability of learning algorithms with unbounded loss functions, make use of a

certain fact about binomial distributions, about the probability of a binomial random variable

exceeding its expected value. Though it has been stated many times in the machine learning

literature, oddly we were unable to find a sufficiently general proof of this fact in existing

papers. Therefore in this chapter we provide such a proof. It is perhaps surprisingly complex

given the simple nature of its conclusion and the basic nature of its subject. The discrete and

(for some parameter values) highly asymmetric nature of the binomial distribution creates

considerable complications.

268



8.1 Motivation

This chapter presents a tight lower bound on the probability that a binomial random

variable exceeds its expected value. If the binomial distribution were symmetric around its

mean, such a bound would be trivially equal to 1/2. And indeed, when the number of trials

m for a binomial distribution is large, and the probability p of success on each trial is not

too close to 0 or to 1, the binomial distribution is approximately symmetric. With p is fixed,

and m sufficiently large, the de Moivre-Laplace theorem tells us that we can approximate

the binomial distribution with a normal distribution. But, when p is close to 0 or 1, or the

number of trials m is small, substantial asymmetry around the mean can arise, as illustrated

by Figure 8.1, which shows the binomial distribution for different values of m and p.

The lower bound we prove has been invoked several times in the machine learning literature,

starting with work on relative deviation bounds by Vapnik (1998), where it is stated without

proof. Relative deviation bounds are useful bounds in learning theory that provide more

insight than the standard generalization bounds because the approximation error is scaled by

the square root of the true error. In particular, they lead to sharper bounds for empirical

risk minimization, and play a critical role in the analysis of the generalization bounds for

unbounded loss functions (Cortes et al., 2010b).

This binomial inequality is mentioned and used again without proof or reference in

Anthony and Shawe-Taylor (1993), where the authors improve the original work of Vapnik

(1998) on relative deviation bounds by a constant factor. The same claim later appears in

Vapnik (2006a) and implicitly in other publications referring to the relative deviations bounds

of Vapnik (1998).

To the best of our knowledge, there is no publication giving an actual proof of this

inequality in the machine learning literature. Our search efforts for a proof in the statistics

literature were also unsuccessful. Instead, some references suggest in fact that such a proof is
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Probability of Successes

Figure 8.1: Plots of the probability of getting different numbers of successes k, for the
binomial distribution B(m, p), shown for three different values of m, the number of trials,
and p, the probability of a success on each trial. Note that in the second and third image,
the distribution is clearly not symmetrical around its mean.

indeed not available. In particular, we found one attempt to prove this result in the context

of the analysis of some generalization bounds (Jaeger, 2005), but the proof is not sufficient to

show the general case needed for the proof of Vapnik (1998), and only pertains to cases where

the number of Bernoulli trials is ‘large enough’. A concise proof of this inequality for the

special case where p ≤ 1
2

(Rigollet and Tong, 2011) was also recently brought to our attention.

However that proof technique does not seem to readily extend to the general case. We also

derived an alternative straightforward proof for the same special case using Slud’s inequality

following a suggestion of Luc Devroye (private communication). However, the proof of the

general case turned out to be more challenging. Our proof therefore seems to be the first

rigorous justification of this inequality, which is needed, among other things, for the analysis

of relative deviation bounds in machine learning.

In Section 8.2, we start with some preliminaries and then give the presentation of our

main result. In Section 8.3, we give a detailed proof of the inequality.

8.2 Main Result

The following is the standard definition of a binomial distribution.

Definition 1. A random variable X is said to be distributed according to the binomial
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distribution with parameters m (the number of trials) and p (the probability of success on

each trial), if for k = 0, 1, . . . ,m we have

P[X = k] =

(
m

k

)
pk(1− p)m−k. (8.1)

The binomial distribution with parameters m and p is denoted by B(m, p). It has mean mp

and variance mp(1− p).

The following theorem is the main result of this chapter.

Theorem 15. For any positive integer m and any probability p such that p > 1
m

, let X be a

random variable distributed according to B(m, p). Then, the following inequality holds:

P
[
X ≥ E [X]

]
>

1

4
, (8.2)

where E[X] = mp is the expected value of X.

The lower bound is never reached but is approached asymptotically when m = 2 as p→ 1
2

from the right. Note that when m = 2, the case p = 1
2

is excluded from consideration, due to

our assumption p > 1
m

. In words, the theorem says that a coin that is flipped a fixed number

of times always has a probability of more than 1/4 of getting at least as many heads as the

expected value of the number of heads, as long as the coin’s chance of getting a head on each

flip is not so low that the expected value is less than or equal to 1. The inequality is tight, as

illustrated by Fig. 8.2.

8.3 Proof

Our proof is based on the following series of lemmas and corollaries and makes use of

Camp-Paulson’s normal approximation to the binomial cumulative distribution function

271



Probability of Exceeding Mean

Figure 8.2: This plot depicts P[X ≥ E[X]], the probability that a binomially distributed
random variable X exceeds its expectation, as a function of the trial success probability p.
Each colored line corresponds to a different number of trials, m = 2, 3, . . . , 8. Each colored
line is dotted in the region where p ≤ 1

m
, and solid in the region that our proof pertains

to, where p > 1
m

. The dashed horizontal line at 1
4

represents the value of the lower bound.
Our theorem is equivalent to saying that for all positive integers m (not just the values of
m shown in the plot), the solid portions of the colored lines never cross below the dashed
horizontal line. As can be seen from the figure, the lower bound is nearly met for many of
values of m.

(Johnson et al., 1995, 2005; Lesch and Jeske, 2009). We start with a lower bound that reduces

the problem to a simpler one.

Lemma 13. For all k = 1, 2, . . . ,m− 1 and p ∈ ( k
m
, k+1
m

], the following inequality holds:

PX∼B(m,p)[X ≥ E[X]] ≥ PX∼B(m, k
m

)[X ≥ k + 1].

Proof. Let X be a random variable distributed according to B(m, p) and let F (m, p) denote

P[X ≥ E[X]]. Since E[X] = mp, F (m, p) can be written as the following sum:

F (m, p) =
m∑

j=dmpe

(
m

j

)
pj(1− p)m−j.
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We will consider the smallest value that F (m, p) can take for p ∈ ( 1
m
, 1] and m a positive

integer. Observe that if we restrict p to be in the half open interval Ik = (k−1
m
, k
m

], which

represents a region between the discontinuities of F (m, p) which result from dmpe, then we

have mp ∈ (k − 1, k] and so dmpe = k. Thus, we can write

∀p ∈ Ik, ∀k = 0, 1, . . . ,m− 1 F (m, p) =
m∑
j=k

(
m

j

)
pj(1− p)m−j.

The function p 7→ F (m, p) is differentiable for all p ∈ Ik and its differential is

∂F (m, p)

∂p
=

m∑
j=k

(
m

j

)
(1− p)m−j−1pj−1(j −mp).

Furthermore, for p ∈ Ik, we have k ≥ mp, therefore j ≥ mp (since in our sum j ≥ k), and

so ∂F (m,p)
∂p

≥ 0. The inequality is in fact strict when p 6= 0 and p 6= 1 since the sum must

have at least two terms and at least one of these terms must be positive. Thus, the function

p 7→ F (m, p) is strictly increasing within each Ik. In view of that, the value of F (m, p) for

p ∈ Ik+1 is lower bounded by lim
p→( k

m)
+ F (m, p), which is given by

lim
p→( k

m)
+
F (m, p) =

m∑
j=k+1

(
m

j

)(
k

m

)j (
1− k

m

)m−j
= PX∼B(m, k

m
)[X ≥ k + 1].

Therefore, for k = 1, 2, . . . ,m− 1, whenever p ∈ ( k
m
, k+1
m

] we have

F (m, p) ≥ PX∼B(m, k
m

)[X ≥ k + 1].

Corollary 14. For all p ∈ ( 1
m
, 1), the following inequality holds:

PX∼B(m,p)[X ≥ E[X]] ≥ 1− max
k∈{1,...,m−1}

PX∼B(m, k
m

)[X ≤ k].
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Proof. By Lemma 13, the following inequality holds

PX∼B(m,p)[X ≥ E[X]] ≥ min
k∈{1,..,m−1}

PX∼B(m, k
m

)[X ≥ k + 1].

The right-hand side is equivalent to

min
k∈{1,..,m−1}

1− PX∼B(m, k
m

)[X ≤ k] = 1− max
k∈{1,...,m−1}

PX∼B(m, k
m

)[X ≤ k]

which concludes the proof.

In view of Corollary 14, in order to prove our main result, it suffices that we upper bound

the expression

PX∼B(m, k
m

)[X ≤ k] =
k∑
j=0

(
m

j

)(
k

m

)j (
1− k

m

)m−j
by 3

4
for all integers m ≥ 2 and 1 ≤ k ≤ m− 1. Note that the case m = 1 is irrelevant since

the inequality p > 1
m

assumed for our main result cannot hold in that case, due to p being a

probability. The case k = 0 can also be ignored since it corresponds to p ≤ 1
m

. Finally, the

case k = m is irrelevant, since it corresponds to p > 1. We note, furthermore, that when

p = 1 that immediately gives PX∼B(m,p)[X ≥ E[X]] = 1 ≥ 1
4
.

Now, we introduce some lemmas which will be used to prove our main result.

Lemma 14. The following inequality holds for all k = 1, 2, . . . ,m− 1:

PX∼B(m, k
m

)[X ≤ k] ≤ Φ

[
βkθ + 1

3
γm,k√

βk + γm,k

]
+

0.007√
1− 1

m

,

where Φ: x 7→
∫ x
−∞

1√
2π
e
−s2
2 ds is the cumulative distribution function for the standard normal
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Upper Bound on Binomial Probability

Figure 8.3: For m=2, 22, . . ., 72 and 1 ≤ k ≤ m − 1, this plot depicts the values of
PX∼B(m, k

m
)[X ≤ k] as colored dots (with one color per choice of m), against the values of the

bound from Lemma 14, which are shown as short horizontal lines of matching color. The
upper bound that we need to demonstrate, 3

4
, is shown as a blue horizontal line.

distribution and βk, γm,k, and θ are defined as follows:

βk =
1

1 + k

(
1 +

1

k

)2/3

, γm,k =
1

m− k
, θ =

17

3 21/3
− 3 21/3 ≈ 0.71787.

Proof. Our proof makes use of Camp-Paulson’s normal approximation to the binomial

cumulative distribution function (Johnson et al., 1995, 2005; Lesch and Jeske, 2009), which

helps us reformulate the bound sought in terms of the normal distribution. The Camp-

Paulson approximation improves on the classical normal approximation by using a non-linear

transformation. This is useful for modeling the asymmetry that can occur in the binomial

distribution. The Camp-Paulson bound can be stated as follows (Johnson et al., 1995, 2005):

∣∣∣∣PX∼B(m,p)[X ≤ j]− Φ
[c− µ

σ

]∣∣∣∣ ≤ 0.007√
mp(1− p)
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where

c = (1− b)r1/3, µ = 1− a, σ =
√
br2/3 + a,

a =
1

9m− 9j
, b =

1

9j + 9
, r =

(j + 1)(1− p)
mp− jp

.

Plugging in the definitions for all of these variables yields

Φ

[
c− µ
σ

]
= Φ


(

1− 1
9

1
j+1

)(
1
p

(j+1)(1−p)
m−j

)1/3

+ 1
9

1
m−j − 1√

1
9

1
j+1

(
1
p

(j+1)(1−p)
m−j

)2/3

+ 1
9

1
m−j

 .

Applying this bound to the case of interest for us where p = k
m

and j = k, yields

c− µ
σ

=
αk + 1

3
γm,k√

βk + γm,k
,

with αk =
(
1 + 1

k

)1/3 (
3− 1

3
1

1+k

)
− 3, and with βk = 1

1+k
(1 + 1

k
)2/3. Thus, we can write

PX∼B(m, k
m

)[X ≤ k] ≤ Φ

[
αk + 1

3
γm,k√

βk + γm,k

]
+

0.007√
k
(
1− k

m

) . (8.3)

To simplify this expression, we will first upper bound αk in terms of βk. To do so, we consider

the ratio

αk
βk

=
(1 + 1

k
)1/3(3− 1

3
1

1+k
)− 3

1
1+k

(1 + 1
k
)2/3

=
3[(1 + 1

k
)1/3 − 1]

1
1+k

(1 + 1
k
)2/3

− 1

3(1 + 1
k
)1/3

.

Let λ = (1 + 1
k
)1/3, which we can rearrange to write 1

1+k
= λ3−1

λ3
, with λ ∈ (1, 21/3]. Then, the
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ratio can be rewritten as follows:

αk
βk

=
3λ3[(λ− 1]

(λ3 − 1)λ2
− 1

3λ
=

3λ

1 + λ+ λ2
− 1

3λ
.

The expression is differentiable and its differential is given by

d

dλ

αk
βk

=
3(1 + λ+ λ2)− 3λ(2λ+ 1)

(1 + λ+ λ2)2
+

1

3λ2

=
(1− λ2)

(1 + λ+ λ2)2
+

1

3λ2
=
−8(λ− 1)4 − 30(λ− 1)3 − 30(λ− 1)2 + 9

3λ2 (1 + λ+ λ2)2 .

For λ ∈ (1, 2
1
3 ], λ− 1 ≤ 2

1
3 − 1 ≤ 0.26, thus, the following inequality holds:

8(λ− 1)4 + 30(λ− 1)3 + 30(λ− 1)2 ≤ 8(2
1
3 − 1)4 + 30(2

1
3 − 1)3 + 30(2

1
3 − 1)2 ≈ 2.59 < 9.

Thus, the derivative is positive, so αk
βk

is an increasing function of λ on the interval (1, 2
1
3 ]

and its maximum is reached for λ = 2
1
3 . For that choice of λ, the ratio can be written

3 2
1
3

1 + 2
1
3 + 2

2
3

− 1

3 2
1
3

=
17

3 2
1
3

− 3 2
1
3 = θ ≈ 0.717874,

which upper bounds αk
βk

. Since Φ[x] is a strictly increasing function, using

αk ≤ θβk yields

Φ

[
αk + 1

3
γm,k√

βk + γm,k

]
≤ Φ

[
βkθ + 1

3
γm,k√

βk + γm,k

]
. (8.4)

We now bound the term 0.007√
k(1− k

m
)
. The quadratic function k 7→ k(1 − k

m
) for k =

1, 2, . . . ,m− 1, achieves its minimum at k = 1, giving k(1− k
m

) ≥ (1− 1
m

). Thus, in view of

(8.3) and (8.4), we can write

P
[
B(m,

k

m
) ≤ k

]
≤ Φ

[
βkθ + 1

3
γm,k√

βk + γm,k

]
+

0.007√
1− 1

m

.
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This concludes the proof.

As illustrated by Fig. 8.3, the upper bound provided by Lemma 14 closely approximates

the true value.

Lemma 15. Let βk = 1
1+k

(
1 + 1

k

)2/3
and γm,k = 1

m−k for m > 1 and

k = 1, 2, . . . ,m− 1. Then, the following inequality holds for θ = 17

3 2
1
3
− 3 2

1
3 :

Φ

[
βkθ + 1

3
γm,k√

βk + γm,k

]
≤ Φ

[
βkθ + 1

3√
βk + 1

]
.

Proof. Since for k = 1, 2, . . . ,m− 1, we have 1
m−1
≤ γm,k ≤ 1, the following inequality holds:

βkθ + 1
3
γm,k√

βk + γm,k
≤ max

γ∈[0,1]

βkθ + 1
3
γ

√
βk + γ

.

Since βk = 1
1+k

(
1 + 1

k

)2/3
> 0, the function φ : γ 7→ βkθ+

1
3
γ√

βk+γ
is continuously differentiable for

γ ∈ [0, 1]. Its derivative is given by φ′(γ) = γ+βk(2−3θ)

6(βk+γ)3/2
. Since

2 − 3θ ≈ −0.1536 < 0, φ′(γ) is non-negative if and only if γ ≥ βk(3θ − 2). Thus, φ(γ) is

decreasing for γ < βk(3θ − 2) and increasing for values of γ larger than that threshold. That

implies that the shape of the graph of φ(γ) is such that the function’s value is maximized at

the end points. So maxγ∈[0,1] φ(γ) = max(φ(0), φ(1)) = max(
√
βkθ,

βkθ+
1
3√

βk+1
). The inequality

√
βkθ ≤

βkθ+
1
3√

βk+1
holds if and only if βk(βk + 1)θ2 ≤ (βkθ + 1

3
)2, that is if βk ≤ 1

θ(9θ−6)
≈ 3.022.

But since βk is a decreasing function of k, it has β1 ≈ 0.7937 as its upper bound, and so

this necessary requirement always holds. That means that the maximum value of φ(γ) for

γ ∈ [0, 1] occurs at γ = 1, yielding the upper bound
βkθ+

1
3√

βk+1
, which concludes the proof.

Corollary 15. The following inequality holds for all m ≥ 2 and k ≥ 2:

PX∼B(m, k
m

)[X ≤ k] ≤ 0.7152.
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Proof. By Lemmas 14-15, we can write

PX∼B(m, k
m

)[X ≤ k] ≤ Φ

[
βkθ + 1

3√
βk + 1

]
+

0.007√
1− 1

m

.

Furthermore βk = 1
1+k

(
1 + 1

k

)2/3
is a decreasing function of k. Therefore, for k ≥ 2, it must

always be within the range βk ∈ [limk→∞ βk, β2] =
[
0, 1

22/331/3

]
≈ [0, 0.43679], which implies

βkθ + 1
3√

βk + 1
≤ max

k≥2

βkθ + 1
3√

βk + 1
≤ max

β∈[0,β2]

βθ + 1
3√

β + 1
.

The derivative of the differentiable function g : β 7→ βθ+ 1
3√

β+1
is given by g′(β) = 3(β+2)θ−1

6(β+1)3/2
. We

have that 3(β + 2)θ− 1 ≥ 6θ− 1 ≥ 6× .717− 1 > 0, thus g′(β) ≥ 0. Hence, the maximum of

g(β) occurs at β2, where g(β2) is slightly smaller than 0.53968. Thus, we can write

Φ

[
βkθ + 1

3√
βk + 1

]
≤ Φ

[
max
β∈[0,β2]

βθ + 1
3√

β + 1

]
≤ Φ[0.53968] < 0.7053.

Now, m 7→ 0.007√
1− 1

m

is a decreasing of function of m, thus, for m ≥ 2 it is maximized at m = 2,

yielding 0.007√
1− 1

m

≤ 0.0099. Hence, the following holds:

Φ

[
βkθ + 1

3√
βk + 1

]
+

0.007√
1− 1

m

≤ 0.7053 + 0.0099 = 0.7152,

as required.

The case k = 1 is addressed by the following lemma.

Lemma 16. Let X be a random variable distributed according to B(m, 1
m

). Then, the

following equality holds for any m ≥ 2:

P [X ≤ 1] ≤ 3

4
.
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Proof. For m ≥ 2, define the function ρ by

ρ(m) = P [X ≤ 1] =
1∑
j=0

(
m

j

)(
1

m

)j (
1− 1

m

)m−j
=

(
1− 1

m

)m
+

(
1− 1

m

)m−1

.

The value of the function for m = 2 is given by ρ(2) =
(
1− 1

2

)2
+
(
1− 1

2

)2−1
= 3

4
. Thus, to

prove the result, it suffices to show that ρ is non-increasing for m ≥ 2. The derivative of ρ is

given for all m ≥ 2 by

ρ′(m) = (m− 1)m−1m−m
(

2 + (2m− 1) log

[
1− 1

m

])
.

Thus, for m ≥ 2, ρ′(m) ≤ 0 if and only if 2 + (2m − 1) log
[
1− 1

m

]
≤ 0. Now, for m ≥ 2,

using the first three terms of the expansion − log
[
1− 1

m

]
=
∑∞

k=1
1
k

1
mk

, we can write

−(2m− 1) log

[
1− 1

m

]
≥ (2m− 1)

(
1

m
+

1

2m2
+

1

3m3

)
= 2 +

1

6m2
− 1

3m3
≥ 2,

where the last inequality follows from 1
6m2 − 1

3m3 ≥ 0 for m ≥ 2. This shows that ρ′(m) ≤ 0

for all m ≥ 2 and concludes the proof.

We now complete the proof of our main result, by combining the previous lemmas and

corollaries.

of Theorem 15. By Corollary 14, we can write

PX∼B(m,p)[X ≥ E[X]]

≥ 1− max
k∈{1,...,m−1}

PX∼B(m, k
m

)[X ≤ k]

= 1−max
{
PX∼B(m, 1

m
)[X ≤ 1], max

k∈{2,...,m−1}
PX∼B(m, k

m
)[X ≤ k]

}
≥ 1−max{3

4
, 0.7152} = 1− 3

4
=

1

4
,
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where the last inequality holds by Corollary 15 and Lemma 16.

Corollary 16. For any positive integer m and any probability p such that

p < 1− 1
m

, let X be a random variable distributed according to B(m, p). Then, the following

inequality holds:

P
[
X ≤ E [X]

]
>

1

4
, (8.5)

where E[X] = mp is the expected value of X.

Proof. Let G(m, p) be defined as

G(m, p) ≡ P
[
X ≤ E [X]

]
=

bmpc∑
j=0

(
m

j

)
pj(1− p)m−j

and let F (m, p) be defined as before as

F (m, p) ≡ P
[
X ≥ E [X]

]
=

m∑
j=dmpe

(
m

j

)
pj(1− p)m−j.

Then, we can write, for q = 1− p,

G(m, p) = G(m, 1− q)

=

bm(1−q)c∑
j=0

(
m

j

)
(1− q)jqm−j

=
m∑

t=m−bm(1−q)c

(
m

m− t

)
(1− q)m−tqt

=
m∑

t=dmqe

(
m

t

)
(1− q)m−tqt

= F (m, q) = F (m, 1− p) > 1

4

with the inequality at the end being an application of Theorem 15, which holds so long as
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q > 1
m

, or equivalently, so long as p < 1− 1
m

.

8.4 Conclusion

We presented a rigorous justification of an inequality needed for the proof of relative

deviations bounds in machine learning theory. A number of first attempts to find such a

proof in the literature, or to prove this result ourselves, indicated that the inequality is not

straightforward. Nevertheless, a simpler proof of this inequality is likely possible, and we

may present such a simpler result in the future.
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Chapter 9

Dependent Rademacher Complexity

and Hypothesis Set Stability

In Chapter 7 we explored one limitation of classical machine learning generalization

inequalities, namely their dependence on the boundedness of the loss function. Here, we

explore another limitation, which is that they generally require us to either view our machine

learning algorithm as selecting its hypothesis from a fixed data independent hypothesis set,

or to view the algorithm as considering only a single data dependent hypothesis. The former

constraint characterizes Rademacher Complexity bounds, and the latter, Uniform Stability

bounds.

In this chapter we construct a generalization inequality which allows for situations where

the hypothesis set considered by our algorithm is data dependent. This case is actually

surprisingly common, given that many algorithms set a free parameter by using k-fold cross-

validation, which effectively makes the hypothesis set under consideration depend on the

data. This work also applies to Chapter 2, which discusses Weight Functions that reduce the

influence of some data points, Chapter 3, which applies Weight Functions in the context of
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Ridge Regression, and Chapter 5, which is about unusual choices of regularization. In the

first two cases we need our weighting for each data point to be data dependent, and in the

latter case, we may want our generalized choice of regularization to be based on the data, so

these are all potential applications of the theory of data dependent hypothesis sets. As we

will see however, the bound we introduce in this chapter is much more general than these

examples, as it encompasses both Rademacher Complexity and Uniform Stability as special

cases.

9.1 Introduction

In machine learning theory, Rademacher Complexity (Bartlett and Mendelson, 2003;

Koltchinskii and Panchenko, 2000b) is a powerful tool for measuring the potential that an

algorithm has to overfit the training data. It is calculated from the set H of hypothesis

functions from which an algorithm selects its hypothesis. In this chapter, we introduce

D-Rademacher Complexity, a generalization of the usual Rademacher Complexity. It allows

us to measure the complexity of a set of hypothesis functions, even when that set of hypothesis

functions is dependent on the training sample, S (hence the “D” stands for “Dependent”).

Formally, D-Rademacher Complexity is not defined on sets of functions, H, as in the usual

case, but rather, on functions HS that map the sample S into a set of functions. It is a strict

generalization of the ordinary notion of Rademacher Complexity, which becomes apparent

when we use HS = H, in other words, when the function that maps the sample into a set of

hypothesis functions does not actually depend on the sample.

Uniform Stability is another powerful tool for analyzing a learning algorithm’s potential

to overfit. Its view of machine learning algorithms is as maps from a training set S into

a hypothesis function hS (Bousquet and Elisseeff, 2002). In this chapter, we introduce
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Hypothesis Set Stability, a generalization of the usual notion of Uniform Stability. It allows

us to think of a learning algorithm as mapping the sample, S, into a set of hypotheses, HS,

rather than into a single hypothesis, hS.

By generalizing Rademacher Complexity to allow for the possibility of the hypothesis set

being data dependent1, and by generalizing the Uniform Stability to allow for the possibility

of having sets of hypotheses rather than just a single hypothesis, we show that these two

popular theories can be fused into a single, overarching theory. We then apply this new

theory to derive a generalization bound for data-dependent hypothesis sets, which relates a

learning algorithm’s training set error to its average error on new, unseen data. By allowing

for hypothesis sets that have one element or many, that are data independent or highly data

dependent, this bound encompasses both the standard Rademacher Complexity generalization

bound and the standard Uniform Stability bound as special cases.

In practice, data dependent hypothesis sets are common. They occur, for instance, when

a learning algorithm has a free parameter that is set using the training data, such as via

k-fold cross-validation. Furthermore, just as Rademacher Complexity and Uniform Stability

can both be used to analyze the same algorithm, this more general theory can be used to

analyze one algorithm from multiple perspectives. The bounds introduced here could very

likely be improved and tightened in future work, but this chapter provides a starting point

1We note that sometimes Rademacher Complexity is already viewed as a “data dependent” measure of
complexity, because the Empirical Rademacher Complexity depends on the sample. But that is not the
same type of data dependence that we are talking about here, as we are referring to the hypothesis set
itself being data dependent. What’s more, one may be tempted to simply fix the sample S in advance
to form a static hypothesis set, and then apply the usual Empirical Rademacher Complexity bound. But
because generalization bounds are probabilistic bounds with respect to a random draw of the sample S, it
is unclear what the probability is being taken over if the sample is fixed. Finally, it is worth noting that
the standard proof of the Rademacher Complexity bound fails in the data dependent hypothesis set case
at the moment one attempts to introduce Rademacher random variables, and the standard proof of the
Empirical Rademacher Complexity bound therefore also fails, since it is usually derived from the standard
(non-empirical) Rademacher Complexity bound.
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for a unified theory of Rademacher Complexity and Uniform Stability.

Note that, technically speaking, a data dependent hypothesis set HS is a function that

maps any set S ∈ Xm into a set of functions containing (at minimum) all of the hypothesis

functions our machine learning algorithm could select when trained on the sample S. However,

when it is clear from context, we will often use HS to mean the set of hypothesis functions

that results from applying this function to the sample S, just as f(x) is often used to refer to

both the function f and its output when the value x is used as an input. It is also important

to observe that a data dependent hypothesis set, HS, does not actually correspond to a

specific algorithm, but rather, to a set of algorithms. In particular, it refers to the set of all

algorithms that, when trained on sample S, always output a single hypothesis function that

is contained in the set HS.

9.1.1 Example Hypothesis Set

To make the notion of a data dependent hypothesis set concrete, we now give an example.

Throughout this chapter, we will assume that each point in our training sample, S, is drawn

independently from the same fixed distribution D, and is limited to some domain X . We write

S = {s1, s2, . . . , sm}, and we think of each si as having two parts. We write si = (X i, yi),

with X i being one training point in a matrix X of such points, and yi being the corresponding

training label from a column vector of training labels y. We also need to select an associated

loss function L for our learning problem, which measures the error that is realized when

predicting point s using hypothesis h ∈ HS, written L(h, s).
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As an example, consider a data dependent hypothesis set HS that consists of all func-

tions that are non-negative linear combinations of exactly m multi-variate gaussians, all

sharing a positive definite covariance matrix Σ, where one gaussian is centered at each of the

points X i, and where each gaussian is multiplied by its corresponding training label. That

means that, for positive numbers ci, each hypothesis h in our hypothesis set takes the form:

h(x) =
m∑
i=1

ci yi e
− 1

2
(x−Xi)ᵀΣ−1(x−Xi)

and our entire data dependent hypothesis set is

HS = {h(x) | ∀ ci ≥ 0 & Λ � 0}.

Then, to measure error, suppose we have the squared loss function, L(h, si) = (h(X i)− yi)2.

Note that the hypothesis set depends directly on the sample points si = (X i, yi), and so

is indeed data dependent. Note also that for each training sample, S, the definition above

describes a set of hypotheses, not just a single hypothesis, due to the undetermined non-

negative values ci and the positive definite matrix Λ. Therefore this case can neither be

analyzed using Rademacher Complexity (since there is data dependence) nor using Uniform

Stability (since the case refers to an entire set of hypotheses, not just a single hypothesis).

We could, however, apply the former theory if we discard information and switch to the

larger data independent hypothesis set
⋃
S∈Xm HS, and we could apply the latter theory if

we add extra information to specify precisely how the ci and Σ vary as a function of S, so

that we are considering only a single, data dependent hypothesis function. One advantage of

the generalized theory proposed in this chapter is that it applies to cases such as this one

directly, without needing to discard or specify extra information.
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9.2 Two Perspectives

Except in trivial cases, there are always multiple ways to represent a machine learning

algorithm’s hypothesis set. At one extreme, we can think of its hypothesis set as not de-

pending on the training data at all, by choosing a set of hypothesis functions H that fully

encompasses the possible hypotheses that may be selected by the algorithm, as was illustrated

in the example above. When we represent an algorithm in this manner, we can write a

generalization bound in terms of the Rademacher Complexity, which tells us that the out of

sample performance of the algorithm will be unlikely to exceed the training error by much,

as long as the Rademacher Complexity is low (Mohri et al., 2012).

At the other extreme, we can imagine regarding the hypothesis set as just a single function

HS = {hs}, but this function will of course then be highly dependent on the training sample,

S. In this case, a generalization bound can be produced by analyzing the Uniform Stability

of the function hS (Bousquet and Elisseeff, 2002). This analysis is based on examining the

maximum amount that predictions can change when the training sample S is replaced with

S ′, a sample that is identical except for one point which has been changed.

To see both of the perspectives mentioned above, take Ridge Regression as an example.

On the one hand, we can view this algorithm as having a fixed hypothesis set

H = {hw(x) = wᵀx | ||w||2 ≤ ε}
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where ε is a fixed complexity constant. On the other hand, we can view it as having a single

data dependent hypothesis

hS(x) = (XXᵀ + λI)−1Xy

where λ is a complexity constant which is a function of ε.

These perspectives are equally correct. But there are also infinite perspectives that lie

between these two extremes, where we think of Ridge Regression as searching through a data

dependent hypothesis set HS, which is always a subset of the data independent hypothesis

set H, but that always contains the data dependent hypothesis hS(x). We now proceed to

present a theory that encompassed both extremes, as well as the perspectives in between.

9.3 Notation

Let L be our loss function of interest. let L(h, si) be the loss of hypothesis h ∈ HS when

applied to si = (X i, yi) ∈ S, where X i is a training point and yi is a corresponding training

label. As before, we assume that each training point, s, is drawn from some fixed distribution

D, and is restricted to the set X . For the generalization error of a hypothesis h, we write:

L(h) ≡ E
s∼D

[L(h, s)]

where Es∼D[.], indicates the expected value taken over points s drawn from distribution D.

For the empirical error achieved on a sample S = {s1, . . . , sm}, we write:

L̂S(h) ≡ 1

m

m∑
i=1

L(h, si).
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For arbitrary sets of points Q and R each of size m, we define:

η(Q,R) ≡ sup
h∈HQ

L(h)− L̂R(h).

which measures the most that the generalization error and the empirical error on sample

R can differ for any hypothesis in set HQ. Furthermore, we will sometimes use ES[.] as a

shorthand for ES∼Dm [.], and Es[.] as a shorthand for Es∼D[.]. We write S ≡ {s1, . . . , sm}

when we need to refer to the individual points within the sample S. Likewise, when we need

to refer to the individual points of another sample, R, we write R ≡ {r1, . . . , rm}.

9.4 Definitions

Our main theorem of this chapter requires a handful of new definitions. We now generalize

Rademacher Complexity and Uniform Stability, and introduce the idea of Error Radius.

9.4.1 Definition of D-Rademacher Complexity

Let C, which we call the “D-Rademacher Complexity”, be given by

C ≡ E
σ
E
S,R

[
1

m
sup

h∈HS,R

m∑
i=1

σiL(h, ri)

]
(9.1)

with HS,R being the “symmetrization” of HS, which we define as

HS,R ≡
⋃

A⊂ S
⋃
R

|A|=m

HA (9.2)

and where the expectation ES,R[.] is taken with respect to two samples, S and R, both of

size m, with each point in both samples drawn independently from the distribution D, and
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where each σi is an independent random variable taking +1 and −1 with equal probability,

and the ri are the points in sample R. This symmetrization is critical because, as will be

seen below in the proof of our primary theorem, inserting Rademacher random variables into

our formula is equivalent to moving points between two sets, and so our equation must be

symmetric with respect to these two sets so that we can insert these Rademacher random

variables without changing the value of our expression. In the typical case where hypothesis

sets are not data dependent, symmetry is still needed but it is achieved more easily without

needing to introduce HS,R.

9.4.2 Definition of Hypothesis Set Stability

For HS, we define the “Hypothesis Set Stability” constant Q ≥ 0, which is the minimum

value such that, for all allowed S, and for all h ∈ HS, and any S ′ that differs from S by

changing just one point, there always exists an h′ ∈ HS′ such that:

|L(h, s)− L(h′, s)| ≤ Q ∀s ∈ X . (9.3)

9.4.3 Definition of Error Radius

Finally, thinking of HS as a function from the sample S to a set of hypothesis functions,

we define the “Error Radius” constant ω ≥ 0, which is the smallest constant such that for all

allowed S, and for all h1, h2 ∈ HS, we always have:

|L(h1, s)− L(h2, s)| ≤ ω ∀s ∈ X . (9.4)

Note that for the remainder of this chapter we will assume that the loss function L only takes
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values in [0,M]. In such cases, C, Q, and ω are all less than or equal to M.

9.5 Main Result

We now have the notation and definitions that we need to introduce the main result of

this chapter. The remainder of the chapter will focus on proving this result, and discussing

some of its special cases.

Theorem 16 (Generalization Bound for Data-Dependent Hypothesis Sets). Let HS be a

data dependent hypothesis set (i.e. a function mapping a sample S into a set of hypothesis

functions), which contains in it (at minimum) all the possible hypothesis functions that a

particular machine learning algorithm could select when given training sample S. Assume that

S consist of m points (with labels). Let L be a loss function that only takes values in [0,M].

Consider random draws of the set S, with each sample point drawn independently from the

distribution D. Then, for each h ∈ HS, with probability at least 1− δ, the generalization error

L(h) has the following relationship with the training set error L̂S(h):

L(h) ≤ L̂S(h) + min {2C, Q+ ω}+
M+ 2mQ√

2

√
ln(1

δ
)

m
(9.5)

9.5.1 Interpretation

Intuitively, Theorem 16 is saying that if Q falls like 1
m

, and we have either a small enough

C or a small enough ω, then the prediction error of our machine learning algorithm on future

data (drawn from the same distribution as our training data) is unlikely to be much worse

than the error on the training data (for sufficiently large m). We can think of our parameters

of interest as follows:

1. C measures how “complex” our data dependent hypothesis set HS is, measured in terms
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of how well the best functions from it it can fit random binary noise on average (when

using all hypotheses that can be generated using subsamples of size m taken from a set

of 2m points).

2. Q measures how “stable” HS is, in terms of how much difference in error (on any point)

there can be between a hypothesis in HS and the closest hypothesis in HS′ where S’

differs by one point from S.

3. ω measure how “big” HS is, in terms of how much difference in error (on any point)

there can be for any two hypothesis in HS.

Therefore, we can summarize the main theorem of this chapter as saying: as long as HS is

sufficiently “stable”, and additionally it is either sufficiently “low in complexity” or sufficiently

“small”, then error on future data is unlikely to be much worse than error on the training set

when the sample size is large enough.

9.5.2 Limitations

While Theorem 16 is more general than both the standard Rademacher Complexity bound

and the standard Uniform Stability bound, it is important to note its limitations. It only

applies to bounded loss functions, and will only give meaningful results when Q falls at a

rate faster tha 1/
√
m with respect to the sample size m, though a rate of 1/m is needed to

match conventional bounds. Fortunately, when the hypothesis set is data independent this is

automatically true since we obtain Q = 0, and in the case where the hypothesis set contains

just one (data dependent) function, this requirement simply reduces to the same requirements

of ordinary Uniform Stability. Finally, we note that if the hypothesis set is highly dependent

on the sample, then the D-Rademacher Complexity value C could be excessively large, and

when the hypothesis set contains many functions with different behavior, the Error Radius
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ω may be excessively large. So while the bound can be applied to any data dependent

hypothesis set with a bounded loss function, it will not yield a helpful bound in all cases.

Though, as we shall see, in the special cases where the standard Rademacher Complexity

is applicable, and the special cases where standard Uniform Stability apply, the bound in

Theorem 16 exactly reproduces the standard bounds! So it is indeed a strict generalization

of both of these standard theories.

9.6 Proof Outline

Our approach for deriving this theorem mirrors the proof of standard Rademacher

Complexity bound from Mohri et al. (2012), while borrowing ideas from the proof of the

standard Uniform Stability bound from Bousquet and Elisseeff (2002), but generalizes some of

the ideas used in those proofs, and introduces new definitions. We start by showing that the

expected value E[η(S, S)] is upper bounded by the quantity that we call the D-Rademacher

Complexity. Next, we introduce Hypothesis Set Stability. Doing so will provide us with

the conditions we need to apply McDiarmid’s inequality, so that we can say that, with high

probability, E[η(S, S)] is close to η(S, S). After that, we will introduce the Error Radius,

and use it to upper bound E[η(S, S)] a second time. Then we will bound L(h)− L̂S(h) with

η(S, S), and bound η(S, S) with E[η(S, S)], and finally use our upper bounds coming from

the D-Rademacher Complexity and the Error Radius (separately) to bound E[η(S, S)], which

will at last yield the generalization bound of interest.

9.7 D-Rademacher Complexity

Let σ = (σ1, . . . , σm) be a vector of Rademacher random variables, defined to be indepen-

dent and identically distributed, with each taking on +1 and -1 with equal probability. We

294



also introduce a new hypothesis set HS,R that depends on the two samples S and R (both of

size m) in a symmetric fashion. We construct HS,R, as in Thoerem 16, by taking the union

of all data dependent hypothesis sets HA that can be formed by letting A be constructed

from points in S and R, restricting A to have size m.

We observe that in the special case where H is actually independent of the training set, we

simply have HA = H and therefore HS,R = H. Since HS,R is a strictly larger set than HS, but

is symmetric in S and R, it will enable us to introduce the Rademacher random variables into

our upper bound on ES[η(S, S)]. The symmetry of the hypothesis set that it gives us with

respect to S and R is helpful because introducing Rademacher random variables is equivalent

to swapping an arbitrary number of points between S and R, and we need this to be able to

happen without changing the value of the expression. We now proceed with our derivation of

D-Rademacher Complexity, which we will use to upper bound ES[η(S, S)], writing:

E
S

[η(S, S)] = E
S

[ sup
h∈HS

L(h)− L̂S(h)]

= E
S

[ sup
h∈HS

E
R

[L̂R(h)]− L̂S(h)]

≤ E
S,R

[ sup
h∈HS

L̂R(h)− L̂S(h)]

= E
S,R

[
sup
h∈HS

(
1

m

m∑
i=1

L(h, ri)−
1

m

m∑
i=1

L(h, si)

)]

≤ E
S,R

[
sup

h∈HS,R

(
1

m

m∑
i=1

L(h, ri)−
1

m

m∑
i=1

L(h, si)

)]

= E
σ
E
S,R

[
1

m
sup

h∈HS,R

(
m∑
i=1

σi(L(h, ri)− L(h, si))

)]
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≤ E
σ
E
S,R

[
1

m
sup

h∈HS,R

m∑
i=1

σiL(h, ri) +
1

m
sup

h∈HS,R

m∑
i=1

(−σi)L(h, si)

]

= E
σ
E
S,R

[
1

m
sup

h∈HS,R

m∑
i=1

σiL(h, ri)

]
+ E

σ
E
S,R

[
1

m
sup

h∈HS,R

m∑
i=1

(−σi)L(h, si)

]

= 2E
σ
E
S,R

[
1

m
sup

h∈HS,R

m∑
i=1

σiL(h, ri)

]
≡ 2C.

We use C above to denote the D-Rademacher Complexity, which we have also defined in

Theorem 16. It is interesting to note that we can also write our D-Rademacher Complexity

in terms of the usual Empirical Rademacher Complexity, ĈR[H], on sample R for fixed

hypothesis set H, using:

C = E
S,R

[
E
σ

[
1

m
sup

h∈HS,R

m∑
i=1

σiL(h, ri)

]]
= E

S,R

[
ĈR[HS,R]

]
.

So the D-Rademacher Complexity is just the average Empirical Rademacher Complexity,

with respect to two samples S and R simultaneously, on the symmetrized data dependent

hypothesis set HS,R.

Intuitively, the D-Rademacher Complexity measures how well, on average, the loss of the

hypotheses in our data dependent hypothesis set are able to fit +1/-1 noise, when consid-

ering all hypothesis sets that can be created from m points out of a sample of 2m points.

Considering hypothesis sets that use any m points out of 2m may not be the best we can do,

and opens up the possibility in future work of finding a smaller alternative that serves the

same purpose. For instance, perhaps there is a way to define the D-Rademacher Complexity

as simply the average Empirical Rademacher Complexity, ES
[
ĈS[HS]

]
, without changing the

bound in Theorem 16.
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9.8 Hypothesis Set Stability

Our next step is to analyze the stability of η(S, S) with respect to replacing S with S ′,

where S ′ is identical to S but with one point changed. Without loss of generality, we assume

that the point that was changed is the last one, sm, replaced with some other point s′m. This

analysis will allow us to apply McDiarmid’s inequality to show that ES[η(S, S)] and η(S, S)

are close with high probability. We begin by writing:

η(S, S)− η(S ′, S ′) = (η(S, S)− η(S, S ′)) + (η(S, S ′)− η(S ′, S ′)) (9.6)

We now bound the first term on the right hand side of the equation, using our assumption

that L(h, s) ∈ [0,M]:

η(S, S)− η(S, S ′) = sup
h∈HS

L(h)− L̂S(h)− sup
h∈HS

L(h)− L̂S′(h).

= sup
h∈HS

(
L(h)− L̂S(h)

)
− sup

h∈HS

(
L(h)− 1

m

(
m−1∑
i=1

L(h, si) + L(h, s′m)

))

= sup
h∈HS

(
L(h)− L̂S(h)

)
− sup
h∈HS

(
L(h)− 1

m

(
m−1∑
i=1

L(h, si) + L(h, sm) + L(h, s′m)− L(h, sm)

))

= sup
h∈HS

(
L(h)− L̂S(h)

)
− sup

h∈HS

(
L(h)− L̂S(h)− 1

m
(L(h, s′m)− L(h, sm))

)

≤ sup
h∈HS

(
L(h)− L̂S(h)

)
− sup

h∈HS

L(h)− L̂S(h)− sup
∼
h∈HS

1

m
(L(

∼
h, s′m)− L(

∼
h, sm))


= sup
∼
h∈HS

1

m
(L(

∼
h, s′m)− L(

∼
h, sm)) ≤ M

m
.

Next we bound the second term on the right hand side of Equation 9.6. By the definition

of the supremum, for any η > 0 as small as we like, there will always exist some hypothesis
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hη ∈ HS such that

sup
h∈HS

L(h)− L̂S′(h) ≤ η + L(hη)− L̂S′(hη),

which means that for all h′ ∈ HS′ we have:

η(S, S ′)− η(S ′, S ′) = sup
h∈HS

L(h)− L̂S′(h)− sup
h∈HS′

L(h)− L̂S′(h)

≤ η + L(hη)− L̂S′(hη)− sup
h∈HS′

L(h)− L̂S′(h)

≤ η + (L(hη)− L̂S′(hη))− (L(h′)− L̂S′(h′))

= η + (L(hη)− L(h′)) + (L̂S′(h′)− L̂S′(hη)).

We now apply the Hypothesis Set Stability constant Q, as defined in Equation 9.3. It measures

the most that the hypothesis set can change when one point in the sample changes. Intuitively,

when Q is small it means that if S and S ′ differ only by one point, then for every hypothesis

in HS we should be able to find some “close” hypothesis in HS′ , where we are measuring

closeness in terms of the greatest difference in errors the two hypotheses can achieve on any

possible point s (which is not necessarily in S or S ′). We call this Hypothesis Set Stability

because it generalizes Uniform Stability, but it applies to an entire data dependent hypothesis

set HS (when thought of as a function from S to a set of hypothesis functions) rather than to

a data dependent single hypothesis hS. Note that for h ∈ HS and h′ ∈ HS′ , |L(h, s)−L(h′, s)|

is always bounded by M, but this is not a tight enough bound for our purposes. If the

stability constant Q does not decay with respect to m as fast as 1
m

, then though we will still

get a generalization bound in the end, the term associated with McDiarmid’s inequality will

not fall as fast as the desired rate 1√
m

.

Applying Hypothesis Set Stability, combined with the fact that we are free to choose any
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h′ ∈ HS′ in the equation we were deriving above, means that we can simply pick h′ so that it

is “close” to hη ∈ HS. Hence we have:

L̂S′(h′)− L̂S′(hη) =
1

m

m∑
i=1

(L(h′, s′i)− L(hη, s
′
i)) ≤

1

m

m∑
i=1

Q = Q

and

L(hη)− L(h′) = E
s∼D

[L(hη, s)− L(h′, s)] ≤ E
s∼D

[Q] = Q.

Therefore:

η(S, S ′)− η(S ′, S ′) ≤ η + 2Q

but since this holds for all η > 0, we conclude that:

η(S, S ′)− η(S ′, S ′) ≤ 2Q.

We now, at last, are in a position to bound Equation 9.6. We have:

η(S, S)− η(S ′, S ′) = (η(S, S)− η(S, S ′)) + (η(S, S ′)− η(S ′, S ′))

≤ M
m

+ 2Q =
M+ 2mQ

m
.

Since starting with S and replacing one point to get S ′ is symmetrical to starting with S ′

and replacing one point to get S, we can write an identical bound for η(S ′, S ′)− η(S, S) as

we did for η(S, S)− η(S ′, S ′), which lets us conclude that:

|η(S, S)− η(S ′, S ′)| ≤ M+ 2mQ
m

.
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This bound gives us the stability we need (with respect to a point being changed) to

apply McDiarmid’s inequality. This will let us conclude that η(S, S) is unlikely to be much

bigger than ES[η(S, S)].

9.9 McDiarmid’s Inequality

McDiarmid’s inequality tells us in this context that scalar valued functions of randomly

drawn points, which change by a bounded amount when one such point is dropped, will

have a very quickly declining probability of being progressively farther from the mean. Of

particular interest is the way this probability drops off as the sample size m increases, which

we will see has the form 1√
m

.

Theorem 17 (McDiarmid’s Inequality). Let V be some set, and let v = (v1, . . . , vm) with

each vi ∈ V . Furthermore, assume the vi are drawn independently from each other according

to some (possibly different) probability distributions. Let F (v) be a scalar valued function.

Now, if for every v′ ∈ V m that is identical to v ∈ V m but with the ith value vi changed to any

other v′i ∈ V we have the property

|F (v)− F (v′)| ≤ ci,

then the probability of F (v) exceeding its expected value Ev[F (v)] by more than ε satisfies

P[F (v)− Ev[F (v)] ≥ ε] ≤ e
−2ε2∑m
i=1

c2
i .

We now apply McDiarmid’s inequality to η(S, S) by using v = (s1, s2, . . . , sm) and
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F (v) = η(S, S). Since we have shown that |η(S, S) − η(S ′, S ′)| ≤ M+2mQ
m

when S and S ′

differ by only one point, we have ci = M+2mQ
m

, which yields

P[η(S, S)− ES[η(S, S)] ≥ ε] ≤ e
−2mε2

(M+2mQ)2 .

If we want η(S, S) to exceed its expected value by more than ε with at most probability δ,

then we set δ = e
−2mε2

(M+2mQ)2 and solve for ε, which yields:

ε =
M+ 2mQ√

2

√
ln 1

δ

m
.

We can now state that, with probability at least 1− δ, we have:

η(S, S) ≤ ES[η(S, S)] +
M+ 2mQ√

2

√
ln 1

δ

m
. (9.7)

9.10 Error Radius

Consider again the Error Radius constant ω, which was defined in Equation 9.4. It

measures the “size” of a hypothesis set, on a scale from 0 to M, in terms of how much any

two hypothesis from HS can differ in error when applied to any point, for all fixed samples

S. To confirm that ω is indeed a measure of size, note that on the smallest hypothesis sets

possible, that is, ones which only ever contain a single function, we obtain ω = 0. What

is more, if HS is as large as possible for all samples S, by which we mean it contains all

functions, then we obtain ω =M. Finally, we note that, if for data dependent hypothesis

sets AS and BS, we have that AS ⊂ BS for all samples S, then the Error Radius of AS is less

than or equal to the Error Radius of BS.
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Now, let us fix γ > 0, which cannot depend on the sample S. Then, let zγ(S) be a

function of S such that, given any sample S as input, it always produces as its output a

hypothesis function hγS that satisfies:

sup
h∈HS

L(h)− L̂S(h) ≤ γ + L(hγS)− L̂S(hγS). (9.8)

This function zγ(S) is possible to construct. To see why, consider that by the definition

of the supremum, for any fixed γ > 0, and any fixed S, at least one function will satisfy

Equation 9.8. Let Qγ
S be the set of all functions that satisfy the equation for that particular

S. Now let Qγ be a set of sets, which contains as its elements all Qγ
S, for all allowed S. Then,

by the axiom of choice, there exists a “choice function” c(A), which when applied to any

set A that is an element of Qγ, will output exactly one function that satisfies Equation 9.8.

Then we can simply use zγ(S) ≡ c(Qγ
S).

Now, let S0 be the sample S but with the last point replaced with the point s0, where

s0 is drawn independently and from the same distribution as the points in S. Then, using hγS

as defined above, we have:

E
S

[η(S, S)] = E
S

[ sup
h∈HS

L(h)− L̂S(h)] ≤ E
S

[γ + L(hγS)− L̂S(hγS)]

= γ + E
S

[L(hγS)]− E
S

[L̂S(hγS)] = γ + E
S
E
s0

[L(hγS, s0)]− E
S
E
s0

[L(hγS0 , s0)]

= γ + E
S
E
s0

[L(hγS, s0)− L(hγS0 , s0)]]

Now, we apply Hypothesis Set Stability. Since S and S0 only differ by one point, we know

that there is some Q such that, for any hγS ∈ HS, there always exists an h′S0 ∈ HS0 with

|L(hγS, s)− L(h′S0 , s)| ≤ Q ∀s ∈ X .
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Intuitively, a small ω means that every pair of hypotheses in the same set, HS, must be “close”

to each other in the sense of their errors never being too far apart when applied to any point.

Whereas a small Q means that for any samples S and S ′ that differ by only one point, it is

the case that for any hypothesis in HS there must be a “close” hypothesis in H ′S, again in

the sense of their errors never being too far apart when applied to any point. Putting these

two ideas together, we have that there exists an h′S0 such that:

L(hγS, s0)− L(hγS0 , s0)

= (L(hγS, s0)− L(h′S0 , s0)) + (L(h′S0 , s0)− L(hγS0 , s0)) ≤ Q+ ω.

Therefore, we have:

E
S

[η(S, S)] ≤ γ + E
S
E
s0

[L(hγS, s0)− L(hγS0 , s0)]] ≤ γ +Q+ ω

but since γ can be chosen to be any positive number, this implies that

E
S

[η(S, S)] ≤ Q+ ω.
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9.11 Completing the Proof

Putting together the result from McDiarmid’s inequality with our two upper bounds for

ES[η(S, S)], along with the fact that ∀h ∈ HS:

L(h)− L̂S(h) ≤ sup
h∈HS

L(h)− L̂S(h) ≡ η(S, S),

we have

L(h)− L̂S(h) ≤ η(S, S) ≤ ES[η(S, S)] + ε

but we have shown that both

ES[η(S, S)] ≤ 2C

and

ES[η(S, S)] ≤ Q+ ω.

This gives us our generalization bound at last. It says that, if we are choosing the sample S

at random, then with probability at least 1− δ:

L(h) ≤ L̂S(h) + min{2C, Q+ ω}+
M+ 2mQ√

2

√
ln 1

δ

m
.

9.12 Data Independent Hypothesis Set Case

Consider the case where HS = H, that is, the hypothesis set is independent of the sample,

which is precisely the setting where the standard Rademacher Complexity bound applies.

This data independence of the hypothesis set means that HS,R = H and so

C ≡ E
σ
E
S,R

[
1

m
sup

h∈HS,R

m∑
i=1

σiL(h, ri)

]
= E

σ
E
R

[
1

m
sup
h∈H

m∑
i=1

σiL(h, ri)

]
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which is just the usual Rademacher Complexity. Furthermore, in this case we have the

stability constant Q = 0, since the hypothesis sets HS and HS′ are both just H, so obviously

for every hypothesis function h ∈ HS there is a function h′ ∈ HS′ identical to it. We also can

of course use the fact that:

min{2C, Q+ ω} ≤ 2C.

Hence, in the case where the hypothesis set is data independent, our generalization bound

directly implies that with probability at least 1− δ,

L(h) ≤ L̂S(h) + 2E
σ
E
R

[
1

m
sup
h∈H

m∑
i=1

σiL(h, ri)

]
+
M√

2

√
ln 1

δ

m
.

which is precisely the standard Rademacher Complexity generalization bound for a fixed

hypothesis set H and a bounded loss function! Hence, our proposed D-Rademacher Complexity

bound really does generalize the typical bound.

9.13 Single Hypothesis Case

Consider now the case where HS = {hS}, that is, the hypothesis set always consists of

just a single (data dependent) hypothesis function. Then, we have:

HS,R ≡
⋃

A⊂ S
⋃
R

|A|=m

HA =
⋃

A⊂ S
⋃
R

|A|=m

{hA}.

Therefore, in this case HS,R is a set of size
(

2m
m

)
≈ 1√

π
4m√
m
. While finite, this set is extremely

large for even a modest sample size (e.g. it is on the order of 1011 for just m = 20). Here,

the stability constant Q takes on the interpretation that when S and S ′ are any two valid
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samples that differ by only one point,

|L(hS, s)− L(hS′ , s)| ≤ Q ∀s ∈ X .

If Q falls like 1
m

then this is equivalent to to saying that the algorithm represented by the

data dependent hypothesis hS is “stable”, in the sense of Uniform Stability (Bousquet and

Elisseeff, 2002). Hence, Hypothesis Set Stability is a generalization of the usual notion of

Uniform Stability, extending it to allow a data dependent set of hypotheses, rather than just

a single data dependent hypothesis.

What is more, we observe that when the hypothesis set consists of just a single function, then

ω = 0. We then write

min{2C, Q+ ω} ≤ Q+ ω = Q

which gives us the following special case of our generalization bound. With probability at

least 1− δ, we have:

L(h) ≤ L̂S(h) +Q+
M+ 2mQ√

2

√
ln 1

δ

m

which precisely matches the typical Uniform Stability bound2.

9.14 Conclusion

In this chapter we have investigated the situation where the set of hypothesis functions

that a machine learning algorithm explores is allowed to vary based on the training data. We

have introduced the D-Rademacher Complexity, a generalization of the ordinary Rademacher

2Note that sometimes the Q shown here will have a 2 in front in both places it appears in the bound,
which has to do with thinking in terms of dropping a point from the sample rather than changing a point in
the sample as we do here.
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Complexity, to measure the complexity of such a data dependent hypothesis set. We have also

introduced the Hypothesis Set Stability, a generalization of the ordinary Uniform Stability, to

measure the stability of a data dependent hypothesis set with respect to changing one point

in the sample. Finally, we have introduced the Error Radius, which measures the size of a

data dependent hypothesis set in terms of how different the errors of hypotheses it contains

can be.

These definitions allow us to construct a generalization bound that applies to data de-

pendent hypothesis sets. This bound coincides with the standard Rademacher Complexity

bound when the hypothesis set is fixed, and coincides with the standard stability bound

when the hypothesis set always consists of just one function. By generalizing Rademacher

Complexity and Uniform Stability, and then fusing them together to form an overarching

theory, we enable a wider range of perspectives from which to study the generalization ability

of machine learning algorithms.
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Part V

Conclusion
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What	causes	bad	linear	 prediction	
performance?

How	should	we	weight	data	points	if	
they	differ	in	quality?

How	can	we	make	linear	
regression	 robust	to	outliers?

How	can	we	make	statistical	
calculations	 robust	to	outliers?

What	can	we	achieve	by	changing	
regression	 regularization	 penalties?

Should	we	stop	early	 in
regression	 instead	of	regularizing?

Can	we	prove	that	algorithms	can	
learn	when	error	is	unbounded?

Can	a	biased	coin	only	rarely	beat	its	
expected	 number	of	heads?

Can	we	prove	algorithms	 learn	 when	their	
strategy	depends	on	the	data?

Ch 1 Ch 2 Ch 3

Ch 4 Ch 5 Ch 6

Ch 7 Ch 8 Ch 9

Figure 9.1: The image above summarizes the answers that this thesis gives to the questions
that it investigates in each chapter.

We have analyzed a wide variety of problems that occur when applying prediction algo-

rithms to data, and when analyzing the theoretical performance of these algorithms. For

data points that vary in quality, we have proposed an approach for designing functions that

weight data appropriately. For handling outliers we have proposed an algorithm based on

point re-weighting to make Ridge Regression robust, and an algorithm for clipping outliers in

univariate data based on a criteria that will have almost no effect on normally distributed

data. To incorporate prior information into regression while preventing overfitting, we have

proposed a generalization to the standard Ridge Regression regularization penalty. To handle

situations where linear or kernelized regression algorithms spend too long on training, and
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so overfit or waste precious time converging past the point of usefulness, we have proposed

a cross-validated early stopping based approach with desirable properties. For unbounded

loss functions in regression problems, we have given analyses of generalization error using

relative deviation bounds that address or correct previous gaps in the literature, as well as

derived a necessary theorem about the binomial distribution. Finally, for machine learning

algorithms that have hypothesis sets that depend on the training data, we have generalized

and combined Rademacher Complexity and Uniform Stability so that they can be applied in

that context.

It is our hope that the solutions proposed in this thesis will significantly improve pre-

dictions in real-world applications, as well as our theoretical understanding of prediction

algorithms.
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