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Abstract
We present an extensive analysis of relative deviation bounds, including detailed proofs
of two-sided inequalities and their implications. We also give detailed proofs of two-sided
generalization bounds that hold in the general case of unbounded loss functions, under the
assumption that a moment of the loss is bounded. We then illustrate how to apply these
results in a sample application: the analysis of importance weighting.
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1 Introduction

Most generalization bounds in learning theory hold only for bounded loss functions. This
includes standard VC-dimension bounds [47], Rademacher complexity [4, 6, 30, 31] or
local Rademacher complexity bounds [5, 29], as well as most other bounds based on other
complexity terms. This assumption is typically unrelated to the statistical nature of the prob-
lem considered but it is convenient since when the loss functions are uniformly bounded,
standard tools such as Hoeffding’s inequality [3, 24], McDiarmid’s inequality [35], or
Talagrand’s concentration inequality [46] apply.
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There are however natural learning problems where the boundedness assumption does
not hold. This includes unbounded regression tasks where the target labels are not uniformly
bounded, and a variety of applications such as sample bias correction [9, 15, 19, 25, 45],
domain adaptation [7, 10, 14, 18, 28, 33], or the analysis of boosting [17], where the impor-
tance weighting technique is used [12]. It is therefore critical to derive learning guarantees
that hold for these scenarios and the general case of unbounded loss functions.

When the class of functions is unbounded, a single function may take arbitrarily large
values with arbitrarily small probabilities. This is probably the main challenge in deriving
uniform convergence bounds for unbounded losses. And the methods of [32] do not seem
to help in this context, for instance because the probability of the event that a function
takes arbitrarily larger values is not known, and it would not be useful to rule it out with a
high-probability statement.

The problem, however, can be avoided by assuming the existence of an envelope, that is
a single non-negative function with a finite expectation lying above the absolute value of the
loss of every function in the hypothesis set [20, 21, 23, 40, 41]. An alternative assumption
similar to Hoeffding’s inequality based on the expectation of a hyperbolic function, a quan-
tity similar to the moment-generating function, is used by [36]. However, in many problems,
e.g., in the analysis of importance weighting even for common distributions, there exists no
suitable envelope function [12].

Instead, the second or some other αth-moment of the loss seems to play a critical role in
the analysis. Thus, instead, we will consider here the assumption that some αth-moment of
the loss functions is bounded as in [47, 48].

Relatedly, in [8] they prove a concentration inequality under a second moment assump-
tion on the envelope function class, using the entropy method of Ledoux. But their bounds
hold only for countable function classes, while our guarantees hold for arbitrary classes with
finite expected shattering coefficients. They further require an assumption on the bounded-
ness of the average of the supremum over the class of functions of the empirical error times
the root of the sample size, as well as a bracketing assumption for some results.

Another approach is taken in [37], which avoids concentration based methods for the
squared loss function, though the bounds produced are not straightforward to interpret. The
approach taken in [34], on the other hand, is to derive general risk bounds for the empirical
risk minimizer when the classification rules belong to a VC-class under margin conditions.
The paper [27] gives a different perspective, giving asymptotic results for families of dis-
tributions bounded above or below by certain conditions, leading to a limiting Gumbel
distribution, suggesting that under some conditions there might be alternative bounds other
than sub-Gaussian ones.

In [38] a clever symmetrization approach is applied that seems to lead to self-normalized
deviation bounds for VC-classes based on the mixture of the variance and empirical vari-
ance. However, the proof seems to lack some explanation, since the covering number
estimate used is for VC-classes of bounded functions. Self-normalized processes have
attracted attention in other domains as well, outside of the Machine Learning community,
for instance in [39] and [8].

In this paper, we present in detail two-sided generalization bounds for unbounded loss
functions under the assumption that some αth-moment of the loss functions, α > 1, is
bounded. The proof of these bounds makes use of relative deviation generalization bounds
in binary classification, which we also prove and discuss in detail. Much of the results and
material we present is not novel and the paper has therefore a survey nature. However,
our presentation is motivated by the fact that the proofs given in the past for these gener-
alization bounds either had errors or were incomplete. We also apply these results to two



Relative deviation learning bounds and generalization with unbounded loss functions

sample applications of particular interest: importance weighting, and excess risk bounds in
the context of the the Tsybakov noise condition.

We now discuss in more detail prior results and proofs. One-side relative deviation
bounds were first given by [47], later improved by a constant factor by [1]. These publica-
tions and several others have all relied on a lower bound on the probability that a binomial
random variable of m trials exceeds its expected value when the bias verifies p > 1

m
. This

also later appears in [48] and implicitly in other publications referring to the relative devi-
ations bounds of [47]. To the best of our knowledge, no proof of this inequality was given
in the past in the machine learning literature before our work [22]. One attempt was made
to prove this lemma in the context of the analysis of some generalization bounds [26], but
that proof was not sufficient to support the general case needed for the proof of the relative
deviation bound of [47].

We present the proof of two-sided relative deviation bounds in detail using the recent
results of [22]. The two-sided versions we present, as well as several consequences of these
bounds, appear in [2]. However, we could not find a full proof of the two-sided bounds in any
prior publication. Our presentation shows that the proof of the other side of the inequality
is not symmetric and cannot be immediately obtained from that of the first side inequality.
Additionally, this requires another proof related to the binomial distributions given by [22].

Relative deviation bounds are very informative guarantees in machine learning of inde-
pendent interest, beyond the key role they play in the proof of unbounded loss learning
bounds. They lead to sharper generalization bounds whose right-hand side is expressed as
the interpolation of a O(1/m) term and a O(1/

√
m) term that admits as a multiplier the

empirical error or the generalization error. In particular, when the empirical error is zero,
this leads to faster rate bounds. We present in detail the proof of this type of results as well
as that of several others of interest [2]. In the form presented by [47], relative deviation
bounds suffer from a discontinuity at zero (zero denominator), a problem that also affects
inequalities for the other side, and which seems not to have been treated by previous work.
Our proofs and results explicitly deal with this issue.

We use relative deviations bounds to give the full proofs of two-sided generalization
bounds for unbounded losses with finite moments of order α, both in the case 1 < α ≤ 2 and
the case α > 2. One-sided generalization bounds for unbounded loss functions were first
given by [47, 48] under the same assumptions and also using relative deviations. The one-
sided version of our bounds for the case 1 < α ≤ 2 coincides with that of [47, 48] modulo a
constant factor, but the proofs in both books appear to be in error.1 The core component of
our proof is based on a different technique using Hölder’s inequality. We also present some
more explicit bounds for the case 1 < α ≤ 2 by approximating a complex term appearing
in these bounds. The one-sided version of the bounds for the case α > 2 are also due to [47,
48] with similar gaps in the proofs.2 In that case as well, we give detailed proofs using the
Cauchy-Schwarz inequality in the most general case where a positive constant is used in the
denominator to avoid the discontinuity at zero. These learning bounds can be used directly
in the analysis of unbounded loss functions as in the case of importance weighting [12].

1In [47, p.204–206], statement (5.37) cannot be derived from assumption (5.35) as required, and in general
it does not hold: the first integral in (5.37) is restricted to a sub-domain and is thus smaller than the integral
of (5.35). Furthermore, the main statement in Section (5.6.2) is not valid. In [48, p.200–202], the Lagrange
method is invoked to show the main inequality. But with our best efforts, we could not justify some of the
steps. In particular, the way function z is concluded to be equal to one over the first interval without sufficient
justification.
2Several of the comments we made for the case 1 < α ≤ 2 hold here as well. Some of the given steps we
could not justify, even with our best efforts.
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The remainder of this paper is organized as follows. In Section 2, we briefly introduce
some definitions and notation used in the next sections. Section 3 presents in detail relative
deviation bounds as well as several of their consequences. Next, in Section 4 we present
generalization bounds for unbounded loss functions under the assumption that the moment
of order α is bounded first in the case 1 < α ≤ 2 (Section 4.1), then in the case α > 2
(Section 4.2). Finally, in Section 5 we demonstrate two sample applications of these results.

2 Preliminaries

We consider an input space X and an output space Y , which in the particular case of binary
classification is Y = {−1, +1} or Y = {0, 1}, or a measurable subset of R in regression.
We denote by D a distribution over Z = X ×Y . For a sample S of size m drawn from Dm,
we will denote by ̂D the corresponding empirical distribution, that is the distribution corre-
sponding to drawing a point from S uniformly at random. Throughout this paper, H denotes
a hypothesis class of functions mapping from X to Y . The loss incurred by hypothesis
h ∈ H at z ∈ Z is denoted by L(h, z). L is assumed to be non-negative, but not necessar-
ily bounded. We denote by L(h) the expected loss or generalization error of a hypothesis
h ∈ H and by ̂LS(h) its empirical loss for a sample S:

L(h) = E
z∼D

[L(h, z)] ̂LS(h) = E
z∼̂D

[L(h, z)]. (1)

For any α > 0, we also use the notation Lα(h) = Ez∼D[Lα(h, z)] and ̂Lα(h) =
Ez∼̂D[Lα(h, z)] for the αth moments of the loss. When the loss L coincides with the
standard zero-one loss used in binary classification, we equivalently use the following
notation

R(h) = E
z=(x,y)∼D

[1h(x)�=y] ̂RS(h) = E
z=(x,y)∼̂D

[1h(x)�=y]. (2)

We will sometimes use the shorthand xm
1 to denote a sample of m > 0 points (x1, . . . , xm) ∈

Xm. For any hypothesis set H of functions mapping X to Y = {−1, +1} or Y = {0, 1} and
sample xm

1 , we denote by SH (xm
1 ) the number of distinct dichotomies generated by H over

that sample and by �m(H) the growth function:

SH (xm
1 ) = Card ({(h(x1), . . . , h(xm)) : h ∈ H }) (3)

�m(H) = max
xm

1 ∈Xm
SH (xm

1 ). (4)

3 Relative deviation bounds

In this section we prove a series of relative deviation learning bounds which we use in
the next section for deriving generalization bounds for unbounded loss functions. We will
assume throughout the paper, as is common in much of learning theory, that each expression
of the form suph∈H [...] is a measurable function, which is not guaranteed when H is not a
countable set. This assumption holds nevertheless in most common applications of machine
learning.

We start with the proof of a symmetrization lemma (Lemma 2) originally presented by
[47], which is used and improved by [1]. These publications and several others have all
relied on a lower bound on the probability that a binomial random variable of m trials
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exceeds its expected value when the bias verifies p > 1
m

. To our knowledge, no rigorous
proof of this fact was ever provided previously in the literature in the full generality needed.
The proof of this result (Lemma 1) was recently given by us [22].

Lemma 1 Let X be a random variable distributed according to the binomial distribution
B(m, p) with m a positive integer (the number of trials) and p > 1

m
(the probability of

success of each trial). Then, the following inequality holds:

Pr [X ≥ E[X]] >
1

4
, (5)

and, if instead of requiring p > 1
m
we require p < 1 − 1

m
, then

Pr [X ≤ E[X]] >
1

4
, (6)

where in both cases E[X] = mp.

The lower bound in (5) is never reached but is approached asymptotically when m = 2
as p → 1

2 from the right.
Our symmetrization lemma proof (Lemma 2) is more concise than that of [47]. Further-

more, our statement and proof handle the technical problem of discontinuity at zero ignored
by previous authors. The denominator may in general become zero, which would lead to an
undefined result. We resolve this issue by including an arbitrary positive constant τ in the
denominator in most of our expressions.

For the proof of the following result, we will use the function F defined over (0, +∞)×
(0, +∞) by F : (x, y) 
→ x−y

α
√

1
2 [x+y+ 1

m
]
. By Lemma 4, F(x, y) is increasing in x and

decreasing in y.

Lemma 2 Let 1 < α ≤ 2. Assume that mε
α

α−1 > 1. Then, for any hypothesis set H and
any τ > 0, the following holds:

Pr
S∼Dm

[

sup
h∈H

R(h) − ̂RS(h)
α
√

R(h) + τ
> ε

]

≤ 4 Pr
S,S′∼Dm

⎡

⎢

⎣sup
h∈H

̂RS′(h) − ̂RS(h)

α

√

1
2 [̂RS(h) + ̂RS′(h) + 1

m
]

> ε

⎤

⎥

⎦ .

Proof We give a concise version of the proof given by [47]. We first show that the following
implication holds for any h ∈ H :

(

R(h) − ̂RS(h)
α
√

R(h) + τ
> ε

)

∧ (̂RS′(h) > R(h)
)⇒ F(̂RS′(h), ̂RS(h)) > ε. (7)

The first condition can be equivalently rewritten as ̂RS(h) < R(h) − ε(R(h) + τ)
1
α , which

implies

̂RS(h) < R(h) − εR(h)
1
α and ε

α
α−1 < R(h), (8)
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since ̂RS(h) ≥ 0. Assume that the antecedent of the implication (7) holds for h ∈ H . Then,
in view of the monotonicity properties of function F (Lemma 4), we can write:

F(̂RS′(h), ̂RS(h)) ≥ F(R(h), R(h) − εR(h)
1
α ) (̂RS′(h) > R(h) and 1st ineq. of (8))

= R(h) − (R(h) − εR(h)
1
α )

α

√

1
2 [2R(h) − εR(h)

1
α + 1

m
]

≥ εR(h)
1
α

α

√

1
2 [2R(h) − ε

α
α−1 + 1

m
]

(2nd ineq. of (8))

>
εR(h)

1
α

α

√

1
2 [2R(h)]

= ε, (mε
α

α−1 > 1)

which proves (7). Now, by definition of the supremum, for any η > 0, there exists h0 ∈ H

such that

sup
h∈H

R(h) − ̂RS(h)
α
√

R(h) + τ
− R(h0) − ̂RS(h0)

α
√

R(h0) + τ
≤ η. (9)

Using the definition of h0 and implication (7), we can write

Pr
S,S′∼Dm

⎡

⎢

⎣sup
h∈H

̂RS′(h) − ̂RS(h)

α

√

1
2 [̂RS(h) + ̂RS′(h) + 1

m
]

> ε

⎤

⎥

⎦

≥ Pr
S,S′∼Dm

⎡

⎢

⎣

̂RS′(h0) − ̂RS(h0)

α

√

1
2 [̂RS(h0) + ̂RS′(h0) + 1

m
]

> ε

⎤

⎥

⎦ (by def. of sup)

≥ Pr
S,S′∼Dm

[(

R(h0) − ̂RS(h0)
α
√

R(h0) + τ
> ε

)

∧ (̂RS′(h0) > R(h0)
)

]

(implication (7))

= Pr
S∼Dm

[

R(h0) − ̂RS(h0)
α
√

R(h0) + τ
> ε

]

Pr
S′∼Dm

[

̂RS′(h0) > R(h0)
]

(independence).

We now show that this implies the following inequality

Pr
S,S′∼Dm

⎡

⎢

⎣sup
h∈H

̂RS′(h) − ̂RS(h)

α

√

1
2 [̂RS(h) + ̂RS′(h) + 1

m
]
>ε

⎤

⎥

⎦≥ 1

4
Pr

S∼Dm

[

sup
h∈H

R(h) − ̂RS(h)
α
√

R(h) + τ
>ε + η

]

,

(10)
by distinguishing two cases. If R(h0) > ε

α
α−1 , since ε

α
α−1 > 1

m
, by Lemma 1 the inequality

PrS′∼Dm

[

̂RS′(h0) > R(h0)
]

> 1
4 holds, which yields immediately (10). Otherwise we have

R(h0) ≤ ε
α

α−1 . Then, by (8), the condition R(h0)−̂RS(h0)
α
√

R(h0)+τ
> ε cannot hold for any sample

S ∼ Dm which by (9) implies that the condition suph∈H
R(h)−̂RS(h)

α
√

R(h)+τ
> ε +η cannot hold for

any sample S ∼ Dm, in which case (10) trivially holds. Now, since (10) holds for all η > 0,
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we can take the limit η → 0 and use the right-continuity of the cumulative distribution to
obtain

Pr
S,S′∼Dm

⎡

⎢

⎣
sup
h∈H

̂RS′(h) − ̂RS(h)

α

√

1
2 [̂RS(h) + ̂RS′(h) + 1

m
]

> ε

⎤

⎥

⎦
≥ 1

4
Pr

S∼Dm

[

sup
h∈H

R(h) − ̂RS(h)
α
√

R(h) + τ
> ε

]

,

which completes the proof of Lemma 2.

Note that the factor of 4 in the statement of lemma 2 can be modestly improved by
changing the condition assumed from ε

α
α−1 > 1

m
to ε

α
α−1 > k

m
for constant values of k > 1.

This leads to a slightly better lower bound on PrS′∼Dm

[

̂RS′(h0) > R(h0)
]

, e.g. 3.375 rather
than 4 for k = 2, at the expense of not covering cases where the number of samples m is
less than k

ε
α

α−1
. For some values of k, e.g. k = 2, covering these cases is not needed for the

proof of our main theorem (Theorem 1) though. However, this does not seem to simplify the
critical task of proving a lower bound on PrS′∼Dm

[

̂RS′(h0) > R(h0)
]

, that is the probability
that a binomial random variable B(m,p) exceeds its expected value when p > k

m
. One

might hope that restricting the range of p in this way would help simplify the proof of a
lower bound on the probability of a binomial exceeding its expected value. However, our
proof in [22] suggests that this is not the case, since the regime where p is small seems to
be the easiest one to analyze (Fig. 1).

The result of Lemma 2 is a one-sided inequality. The proof of a similar result (Lemma 3)
with the roles of R(h) and ̂RS(h) interchanged makes use of (6).

The proof of the following lemma (Lemma 3) is novel.3 While the general strategy of
the proof is similar to that of Lemma 2, there are some non-trivial differences due to the
requirement p < 1 − 1

m
of (6). The proof is not symmetric as shown by the details given

below.

Lemma 3 Let 1 < α ≤ 2. Assume that mε
α

α−1 > 1. Then, for any hypothesis set H and
any τ > 0 the following holds:

Pr
S∼Dm

[

sup
h∈H

̂RS(h) − R(h)

α
√

̂RS(h) + τ
> ε

]

≤ 4 Pr
S,S′∼Dm

⎡

⎢

⎣sup
h∈H

̂RS′(h) − ̂RS(h)

α

√

1
2 [̂RS(h) + ̂RS′(h) + 1

m
]

> ε

⎤

⎥

⎦

Proof Proceeding in a way similar to the proof of Lemma 2, we first show that the following
implication holds for any h ∈ H :

(

̂RS(h) − R(h)

α
√

̂RS(h) + τ
> ε

)

∧ (R(h) ≥ ̂RS′(h)
)⇒ F(̂RS(h), ̂RS′(h)) > ε. (11)

The first condition can be equivalently rewritten as R(h) < ̂RS(h)− ε(̂RS(h)+ τ)
1
α , which

implies

R(h) < ̂RS(h) − ε̂RS(h)
1
α and ε

α
α−1 < ̂RS(h), (12)

3A version of this lemma is stated in [11], but no proof is given.
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Fig. 1 These plots depict Pr[X ≥ E[X]], the probability that a binomially distributed random variable X

exceeds its expectation, as a function of the trial success probability p. The top plot shows only regions sat-
isfying p > 1

m
whereas the bottom plot shows only regions satisfying p > 2

m
. Each colored line corresponds

to a different number of trials, m = 2, 3, . . . , 14. The dashed horizontal line at 1
4 represents the value of the

lower bound used in the proof of lemma 2
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since ̂RS(h) ≥ 0. Assume that the antecedent of the implication (11) holds for h ∈ H . Then,
in view of the monotonicity properties of function F (Lemma 4), we can write:

F(̂RS(h), ̂RS′(h)) ≥ F(̂RS(h), R(h)) (R(h) ≥ ̂RS′(h))

≥ F(̂RS(h), ̂RS(h) − ε̂RS(h)
1
α ) (1st ineq. of (12))

=
̂RS(h) − (̂RS(h) − ε̂RS(h)

1
α )

α

√

1
2 [2̂RS(h) − ε̂RS(h)

1
α + 1

m
]

≥ εR(h)
1
α

α

√

1
2 [2R(h) − ε

α
α−1 + 1

m
]

(2nd ineq. of (12))

>
εR(h)

1
α

α

√

1
2 [2R(h)]

= ε, (mε
α

α−1 > 1)

which proves (11). For the application of (6) to a hypothesis h, the condition R(h) < 1 − 1
m

is required. Observe that this is implied by the assumptions ̂RS(h) ≥ ε
α

α−1 and mε
α

α−1 > 1:

R(h) < ̂RS(h) − ε
α

√

̂RS(h) ≤ 1 − ε ε
1

α−1 = 1 − ε
α

α−1 < 1 − 1

m
.

The rest of the proof proceeds nearly identically to that of Lemma 2.

In the statements of all the following results, the term Ex2m
1 ∼D2m [SH (x2m

1 )] can be
replaced by the upper bound �2m(H) to derive simpler expressions. By Sauer’s lemma [42,
49], the VC-dimension d of the family H can be further used to bound these quantities since

�2m(H) ≤
(

2em
d

)d

for d ≤ 2m. The first inequality of the following theorem was origi-

nally stated and proven by [47, 48], later by [1] (in the special case α = 2) with a somewhat
more favorable constant, in both cases modulo the incomplete proof of the symmetrization
and the technical issue related to the denominator taking the value zero, as already pointed
out. The second inequality of the theorem and its proof are novel. Our proofs benefit from
the improved analysis of [1].

Theorem 1 For any hypothesis set H of functions mapping a set X to {0, 1}, and any fixed
1 < α ≤ 2 and τ > 0, the following two inequalities hold:

Pr
S∼Dm

[

sup
h∈H

R(h) − ̂RS(h)
α
√

R(h) + τ
> ε

]

≤ 4 E[SH (x2m
1 )] exp

(

−m
2(α−1)

α ε2

2
α+2
α

)

Pr
S∼Dm

[

sup
h∈H

̂RS(h) − R(h)

α
√

̂RS(h) + τ
> ε

]

≤ 4 E[SH (x2m
1 )] exp

(

−m
2(α−1)

α ε2

2
α+2
α

)

.

Note that τ > 0 is required to ensure that the ratio the supremum is taken over will never
have its numerator and denominator be zero at the same time.

Proof We first consider the case where mε
α

α−1 ≤ 1, which is not covered by Lemma 2. We
can then write

4 E[SH (x2m
1 )] exp

[

−m
2(α−1)

α ε2

2
α+2
α

]

≥ 4 E[SH (x2m
1 )] exp

[ −1

2
α+2
α

]

> 1,
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for 1 < α ≤ 2. Thus, the bounds of the theorem hold trivially in that case. On the other hand,
when mε

α
α−1 ≥ 1, we can apply Lemma 2 and Lemma 3. Therefore, to prove theorem 1, it is

sufficient to work with the symmetrized expression suph∈H

̂RS′ (h)−̂RS(h)

α
√

1
2 [̂RS(h)+̂RS′ (h)+ 1

m
]
, rather than

working directly with our original expressions suph∈H
R(h)−̂RS(h)

α
√

R(h)+τ
and suph∈H

̂R(h)−RS(h)
α
√
̂R(h)+τ

.

To upper bound the probability that the symmetrized expression is larger than ε, we begin
by introducing a vector of Rademacher random variables σ = (σ1, σ2, . . . , σm), where the
σi are independent, identically distributed random variables each equally likely to take the
value +1 or −1. Using the shorthand x2m

1 for (x1, . . . , x2m), we can then write

Pr
S,S′∼Dm

⎡

⎢

⎣sup
h∈H

̂RS′(h) − ̂RS(h)

α

√

1
2 [̂RS(h) + ̂RS′(h) + 1

m
]

> ε

⎤

⎥

⎦

= Pr
x2m

1 ∼D2m

⎡

⎢

⎣sup
h∈H

1
m

∑m
i=1(h(xm+i ) − h(xi))

α

√

1
2m

[∑m
i=1(h(xm+i ) + h(xi)) + 1]

> ε

⎤

⎥

⎦

= Pr
x2m

1 ∼D2m,σ

⎡

⎢

⎣sup
h∈H

1
m

∑m
i=1 σi(h(xm+i ) − h(xi))

α

√

1
2m

[∑m
i=1(h(xm+i ) + h(xi)) + 1]

> ε

⎤

⎥

⎦

= E
x2m

1 ∼D2m

⎡

⎢

⎣Pr
σ

⎡

⎢

⎣sup
h∈H

1
m

∑m
i=1 σi(h(xm+i ) − h(xi))

α

√

1
2m

[∑m
i=1(h(xm+i ) + h(xi)) + 1]

> ε

∣

∣

∣

∣

x2m
1

⎤

⎥

⎦

⎤

⎥

⎦ .

Now, for a fixed x2m
1 , we have Eσ

[

1
m

∑m
i=1 σi (h(xm+i )−h(xi ))

α
√

1
2m

[∑m
i=1(h(xm+i )+h(xi ))+1]

]

= 0, thus, by Hoeffding’s

inequality, we can write

Pr
σ

⎡

⎢

⎣

1
m

∑m
i=1 σi(h(xm+i ) − h(xi))

α

√

1
2m

[∑m
i=1(h(xm+i ) + h(xi)) + 1]

> ε

∣

∣

∣

∣

x2m
1

⎤

⎥

⎦

≤ exp

(

−[∑m
i=1(h(xm+i ) + h(xi)) + 1] 2

α m
2(α−1)

α ε2

2
α+2
α
∑m

i=1(h(xm+i ) − h(xi))2

)

≤ exp

(

−[∑m
i=1(h(xm+i ) + h(xi))] 2

α m
2(α−1)

α ε2

2
α+2
α
∑m

i=1(h(xm+i ) − h(xi))2

)

.

Since the variables h(xi), i ∈ [1, 2m], take values in {0, 1}, we can write

m
∑

i=1

(h(xm+i ) − h(xi))
2 =

m
∑

i=1

h(xm+i ) + h(xi) − 2h(xm+i )h(xi)

≤
m
∑

i=1

h(xm+i ) + h(xi) ≤
[

m
∑

i=1

h(xm+i ) + h(xi)

] 2
α

,
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where the last inequality holds since α ≤ 2 and the sum is either zero or greater than or
equal to one. In view of this identity, we can write

Pr
σ

⎡

⎢

⎣

1
m

∑m
i=1 σi(h(xm+i ) − h(xi))

α

√

1
2m

[∑m
i=1(h(xm+i ) + h(xi))]

> ε

∣

∣

∣

∣

x2m
1

⎤

⎥

⎦ ≤ exp

(

−m
2(α−1)

α ε2

2
α+2
α

)

.

We note now that the supremum over h ∈ H in the left-hand side expression in the statement
of our theorem need not be over all hypothesis in H : without changing its value, we can
replace H with a smaller hypothesis set where only one hypothesis remains for each unique
binary vector (h(x1), h(x2), . . . , h(x2m)). The number of such hypotheses is SH (x2m

1 ), thus,
by the union bound, the following holds:

Pr
σ

⎡

⎢

⎣sup
h∈H

∑m
i=1 σi(h(xm+i ) − h(xi))

α

√

1
2 [∑m

i=1(h(xm+i ) + h(xi))]
> ε

∣

∣

∣

∣

x2m
1

⎤

⎥

⎦ ≤ SH (x2m
1 ) exp

(

−m
2(α−1)

α ε2

2
α+2
α

)

.

The result follows by taking expectations with respect to x2m
1 and applying Lemma 2 and

Lemma 3 respectively.

Corollary 1 Let 1 < α ≤ 2 and let H be a hypothesis set of functions mapping X to {0, 1}.
Then, for any δ > 0, each of the following two inequalities holds with probability at least
1 − δ:

R(h) − ̂RS(h) ≤ 2
α+2
2α

α
√

R(h)

√

log E[SH (x2m
1 )] + log 4

δ

m
2(α−1)

α

̂RS(h) − R(h) ≤ 2
α+2
2α

α

√

̂RS(h)

√

log E[SH (x2m
1 )] + log 4

δ

m
2(α−1)

α

.

Proof The result follows directly from Theorem 1 by setting δ to match the upper bounds
and taking the limit τ → 0.

For α = 2, the inequalities become

R(h) − ̂RS(h) ≤ 2

√

R(h)
log E[SH (x2m

1 )] + log 4
δ

m
(13)

̂RS(h) − R(h) ≤ 2

√

̂RS(h)
log E[SH (x2m

1 )] + log 4
δ

m
, (14)

with the familiar dependency O
(√

log(m/d)
m/d

)

. The advantage of these relative deviations

is clear. For small values of R(h) (or ̂RS(h)) these inequalities provide tighter guarantees
than standard generalization bounds. Solving the corresponding second-degree inequalities
in

√
R(h) or

√

̂RS(h) leads to the following results.
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Corollary 2 Let H be a hypothesis set of functions mapping X to {0, 1}. Then, for any
δ > 0, each of the following two inequalities holds with probability at least 1 − δ:

R(h) ≤ ̂RS(h) + 2

√

̂RS(h)
log E[SH (x2m

1 )] + log 4
δ

m
+ 4

log E[SH (x2m
1 )] + log 4

δ

m

̂RS(h) ≤ R(h) + 2

√

R(h)
log E[SH (x2m

1 )] + log 4
δ

m
+ 4

log E[SH (x2m
1 )] + log 4

δ

m
.

Proof The second-degree inequality corresponding to (13) can be written as
√

R(h)
2 − 2

√

R(h)u − ̂RS(h) ≤ 0,

with u =
√

log E[SH (x2m
1 )]+log 4

δ

m
, and implies

√
R(h) ≤ u +

√

u2 + ̂RS(h). Squaring both
sides gives:

R(h) ≤
[

u +
√

u2 + ̂RS(h)

]2

= u2 + 2u

√

u2 + ̂RS(h) + u2 + ̂RS(h)

≤ u2 + 2u

(

√

u2 +
√

̂RS(h)

)

+ u2 + ̂RS(h)

= 4u2 + 2u

√

̂RS(h) + ̂RS(h).

The second inequality can be proven in the same way from (14).

The learning bounds of the corollary make clear the presence of two terms: a term in
O(1/m) and a term in O(1/

√
m) which admits as a factor ̂RS(h) or R(h) and which for

small values of these terms can be more favorable than standard bounds. Theorem 1 can
also be used to prove the following relative deviation bounds.

The following theorem and its proof assuming the result of Theorem 1 were given by [2].

Theorem 2 For all 0 < ε < 1, ν > 0, the following inequalities hold:

Pr
S∼Dm

[

sup
h∈H

R(h) − ̂RS(h)

R(h) + ̂RS(h) + ν
> ε

]

≤ 4 E[SH (x2m
1 )] exp

( −mνε2

2(1 − ε2)

)

Pr
S∼Dm

[

sup
h∈H

̂RS(h) − R(h)

R(h) + ̂RS(h) + ν
> ε

]

≤ 4 E[SH (x2m
1 )] exp

( −mνε2

2(1 − ε2)

)

.

Proof We prove the first statement, the proof of the second statement is identical modulo
the permutation of the roles of R(h) and ̂RS(h). To do so, it suffices to determine ε′ > 0
such that

Pr
S∼Dm

[

sup
h∈H

R(h) − ̂RS(h)

R(h) + ̂RS(h) + ν
> ε

]

≤ Pr
S∼Dm

[

sup
h∈H

R(h) − ̂RS(h)
α
√

R(h) + τ
> ε′

]

,

since we can then apply theorem 1 with α = 2 to bound the right-hand side and take the
limit as τ → 0 to eliminate the τ -dependence. To find such a choice of ε′, we begin by
observing that for any h ∈ H ,

R(h) − ̂RS(h)

R(h) + ̂RS(h) + ν
≤ ε ⇔ R(h) ≤ 1 + ε

1 − ε
̂RS(h) + ε

1 − ε
ν. (15)
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Assume now that R(h)−̂RS(h)√
R(h)+τ

≤ ε′ for some ε′ > 0, which is equivalent to R(h) ≤
̂RS(h) + ε′√R(h) + τ . We will prove that this implies (15).

To start, we see that for all θ > 0

ε′√R(h) + τ =
√

ε′2

θ
θ(R(h) + τ) ≤ 1

2θ
ε′2 + θ

2
(R(h) + τ)

by the inequality of arithmetic and geometric means. Hence:

R(h) ≤ ̂RS(h) + 1

2θ
ε′2 + θ

2
(R(h) + τ)

and therefore, by rearranging to isolate R(h) on one side,

R(h) ≤ 1

1 − θ/2
̂RS(h) + 1

1 − θ/2

(

1

2θ
ε′2 + θ

2
τ

)

.

We now only need to choose ε′, τ and θ such that

1

1 − θ/2
≤ 1 + ε

1 − ε

1

1 − θ/2

(

1

2θ
ε′2 + θ

2
τ

)

≤ ε

1 − ε
ν.

It is sufficient to choose

θ = 4ε

1 + ε

ε′2 ≤ 8ε2

(1 + ε)2
(ν − 2τ)

which establishes that

R(h) ≤ 1 + ε

1 − ε
̂RS(h) + ε

1 − ε
ν.

With these choices, the following inequality holds for all h ∈ H :

R(h) − ̂RS(h)√
R(h) + τ

≤ ε′ ⇒ R(h) − ̂RS(h)

R(h) + ̂RS(h) + ν
≤ ε,

concluding the proof.

The following corollary was given by [2].

Corollary 3 For all ε > 0, v > 0, the following inequality holds:

Pr
S∼Dm

[

sup
h∈H

R(h) − (1 + v)̂RS(h) > ε

]

≤ 4 E[SH (x2m
1 )] exp

( −mvε

4(1 + v)

)

.

Proof Observe that

R(h) − ̂RS(h)

R(h) + ̂RS(h) + ν
> ε ⇔ R(h)−̂RS(h) > (R(h)+̂RS(h)+ν)ε ⇔ R(h) >

1 + ε

1 − ε
̂RS(h)+ εν

1 − ε
.

To derive the statement of the corollary from that of Theorem 2, we identify 1+ε
1−ε

with 1+v,
which gives ε(2 + v) = v, that is we choose ε = v

2+v
, and similarly identify εν

1−ε
with

ε′, that is ε′ =
v

2+v
2

2+v

ν = v
2 ν, thus we choose ν = 2

v
ε′. With these choices of ε′ and ν, the
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coefficient in the exponential appearing in the bounds of Theorem 2 can be rewritten as

follows: vε2

2(1−ε2)
= 2ε′

2v

v2

(2+v)2
4v+4

(2+v)2
= ε′

v
v2

4(v+1)
= ε′v

4(v+1)
, which concludes the proof.

The result of Corollary 3 is remarkable since it shows that a fast convergence rate of O(1/m)

can be achieved provided that we settle for a slightly larger value than the empirical error,
one differing by a fixed factor (1 + v). The following is an immediate corollary when
̂RS(h) = 0, where we take v → ∞.

Corollary 4 For all ε > 0, the following inequality holds:

Pr
S∼Dm

[∃h ∈ H : R(h) > ε ∧ ̂RS(h) = 0
] ≤ 4 E[SH (x2m

1 )] exp

(−mε

4

)

.

This is the familiar fast rate convergence result for separable cases.

4 Generalization bounds for unbounded losses

In this section we will make use of the relative deviation bounds given in the previous section
to prove generalization bounds for unbounded loss functions under the assumption that the
moment of order α of the loss is bounded. We will start with the case 1 < α ≤ 2 and then
move on to considering the case when α > 2. As already indicated earlier, the one-sided
version of the results presented in this section were given by [47] with slightly different
constants, but the proofs do not seem to be correct or complete. The second statements in
all these results (other side of the inequality) are new. Our proofs for both sets of results are
new.

4.1 Boundedmoment with 1 < α ≤ 2

Our first theorem reduces the problem of deriving a relative deviation bound for an
unbounded loss function with Lα(h) = Ez∼D[L(h, z)α] < +∞ for all h ∈ H , to that of
relative deviation bound for binary classification. To simplify the presentation of the results,
in what follows we will use the shorthand Pr[L(h, z) > t] instead of Prz∼D[L(h, z) > t],
and similarly ̂Pr[L(h, z) > t] instead of Prz∼̂D[L(h, z) > t].

Theorem 3 Let 1 < α ≤ 2, 0 < ε ≤ 1, and 0 < τ
α−1
α < ε

α
α−1 . For any loss function L

(not necessarily bounded) and hypothesis set H such that Lα(h) < +∞ for all h ∈ H , the
following two inequalities hold:

Pr

[

sup
h∈H

L(h) − ̂LS(h)
α
√
Lα(h) + τ

> �(α, ε) ε

]

≤ Pr

[

sup
h∈H,t∈R

Pr[L(h, z) > t] − ̂Pr[L(h, z) > t]
α
√

Pr[L(h, z) > t] + τ
> ε

]

Pr

[

sup
h∈H

L(h) − ̂LS(h)
α
√
Lα(h) + τ

> �(α, ε) ε

]

≤ Pr

[

sup
h∈H,t∈R

̂Pr[L(h, z) > t] − Pr[L(h, z) > t]
α
√

̂Pr[L(h, z) > t] + τ
> ε

]

,

with �(α, ε) = α−1
α

(1 + τ)
1
α + 1

α

(

α
α−1

)α−1
(1 +

(

α−1
α

)α

τ
1
α )

1
α

[

1 + log(1/ε)
(

α
α−1

)α−1

] α−1
α

.
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The proof of Theorem 3 is given in the Appendix.
The next corollary follows immediately by upper bounding the right-hand side of the

learning bounds of theorem 3 using theorem 1. It provides learning bounds for unbounded
loss functions in terms of the growth functions in the case 1 < α ≤ 2.

Corollary 5 Let ε < 1, 1 < α ≤ 2, and 0 < τ
α−1
α < ε

α
α−1 . For any loss function L (not

necessarily bounded) and hypothesis set H such that Lα(h) < +∞ for all h ∈ H , the
following inequalities hold:

Pr

[

sup
h∈H

L(h) − ̂L(h)
α
√
Lα(h) + τ

> �(α, ε)ε

]

≤ 4 E[SQ(z2m
1 )] exp

(

−m
2(α−1)

α ε2

2
α+2
α

)

Pr

⎡

⎢

⎣
sup
h∈H

̂L(h) − L(h)

α

√

̂Lα(h) + τ

> �(α, ε)ε

⎤

⎥

⎦
≤ 4 E[SQ(z2m

1 )] exp

(

−m
2(α−1)

α ε2

2
α+2
α

)

,

where Q is the set of functions Q = {z 
→ 1L(h,z)>t | h ∈ H, t ∈ R}, and �(α, ε) =
α−1
α

(1 + τ)
1
α + 1

α

(

α
α−1

)α−1
(1 +

(

α−1
α

)α

τ
1
α )

1
α

[

1 + log(1/ε)
(

α
α−1

)α−1

] α−1
α

.

For comparison with other results in situations where the 2nd moment of the loss is finite,
the following corollary gives the explicit α = 2 case of the above corollary. Note that in the
α = 2 case the expression α

√
Lα(h) + τ relates directly to the standard deviation, and also

coincides with the corresponding expression used by Vapnik.

Corollary 6 Let ε < 1 and 0 < τ < ε4. For any loss function L (not necessarily bounded)
and hypothesis set H such thatL2(h) < +∞ for all h ∈ H , the following inequalities hold:

Pr

[

sup
h∈H

L(h) − ̂L(h)√
L2(h) + τ

> �(2, ε)ε

]

≤ 4 E[SQ(z2m
1 )] exp

(−mε2

4

)

Pr

⎡

⎢

⎣
sup
h∈H

̂L(h) − L(h)
√

̂L2(h) + τ

> �(2, ε)ε

⎤

⎥

⎦
≤ 4 E[SQ(z2m

1 )] exp

(−mε2

4

)

,

with �(2, ε) =
(√

1+τ
2 +

√

1 + 1
4

√
τ

√

1 + 1
2 log 1

ε

)

and Q the set of functions Q = {z 
→
1L(h,z)>t | h ∈ H, t ∈ R}.

Corollary 7 Let L be a loss function (not necessarily bounded) and H a hypothesis set
such that L2(h) < +∞ for all h ∈ H . Then, for any δ > 0, with probability at least 1 − δ,
each of the following inequalities holds for all h ∈ H :

L(h) ≤ ̂LS(h) + 2
√

L2(h)

√

2 log E[SQ(z2m
1 )] + log 1

δ

m
�0

⎛

⎝2, 2

√

2 log E[SQ(z2m
1 )] + log 1

δ

m

⎞

⎠

̂LS(h) ≤ L(h) + 2
√

̂L2(h)

√

2 log E[SQ(z2m
1 )] + log 1

δ

m
�0

⎛

⎝2, 2

√

2 log E[SQ(z2m
1 )] + log 1

δ

m

⎞

⎠ ,
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where Q is the set of functions Q = {z 
→ 1L(h,z)>t | h ∈ H, t ∈ R} and �0(2, ε) =
1
2 +

√

1 + 1
2 log 1

ε
.

Proof For any ε > 0, let f (ε) = �0(2, ε)ε (which is invertible and approximately linear
for ε slightly larger than 0). Then, by Corollary 6,

Pr

[

sup
h∈H

L(h) − ̂L(h)√
L2(h) + τ

> ε

]

≤ 4 E[SQ(z2m
1 )] exp

(−m[f −1(ε)]2

4

)

.

Setting the right-hand side to ε and using inversion yields immediately the first inequality.
The second inequality is proven in the same way.

Observe that, modulo the factors in �0, the bounds of the corollary admit the standard
(1/

√
m) dependency and that the factors in �0 are only logarithmic in m.

4.2 Boundedmoment with α > 2

This section gives two-sided generalization bounds for unbounded losses with finite
moments of order α, with α > 2. As for the case 1 < α < 2, the one-sided version of our
bounds coincides with that of [47, 48] modulo a constant factor, but, here again, the proofs
given in both books seem to be incorrect.

Proposition 1 Let α > 2. For any loss function L (not necessarily bounded) and hypothesis
set H such that 0 < Lα(h) < +∞ for all h ∈ H , the following two inequalities hold:

∫ +∞

0

√

Pr[L(h, z) > t]dt ≤ �(α)
α
√

Lα(h) and
∫ +∞

0

√

̂Pr[L(h, z) > t]dt ≤ �(α)
α

√

̂Lα(h),

where �(α) =
(

1
2

) 2
α
(

α
α−2

) α−1
α
.

Note that the difference between the two inequalities above is that the right inequality
involves the empirical distribution (i.e. drawing a data point uniformly at random from our
fixed data set), whereas the left inequality involves the true, underlying distribution from
which the data points were drawn. The proof of Proposition 1 is given in the Appendix.

Theorem 4 Let α > 2, 0 < ε ≤ 1, and 0 < τ ≤ ε2. Then, for any loss function L (not
necessarily bounded) and hypothesis set H such that Lα(h) < +∞ and ̂Lα(h) < +∞ for
all h ∈ H , the following two inequalities hold:

Pr

[

sup
h∈H

L(h) − ̂L(h)
α
√
Lα(h) + τ

> (α)ε

]

≤ Pr

[

sup
h∈H,t∈R

Pr[L(h, z) > t] − ̂Pr[L(h, z) > t]√
Pr[L(h, z) > t] + τ

>ε

]

Pr

⎡

⎢

⎣
sup
h∈H

̂L(h) − L(h)

α

√

̂Lα(h) + τ

> (α)ε

⎤

⎥

⎦
≤Pr

[

sup
h∈H,t∈R

̂Pr[L(h, z) > t] − Pr[L(h, z) > t]
√

̂Pr[L(h, z) > t] + τ
>ε

]

,

where (α) =
(

1
2

) 2
α
(

α
α−2

) α−1
α + α

α−1τ
α−2
2α .
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Proof We prove the first statement since the second one can be proven in a very

similar way. Assume that suph,t
Pr[L(h,z)>t]−̂Pr[L(h,z)>t]√

Pr[L(h,z)>t]+τ
≤ ε. Fix h ∈ H , let J =

∫ +∞
0

√
Pr [L(h, z) > t] dt and ν = Lα(h). By Markov’s inequality, for any t > 0,

Pr[L(h, z) > t] = Pr[Lα(h, z) > tα] ≤ Lα(h)
tα

= ν
tα

. Using this inequality, for any t0 > 0,
we can write

L(h) − ̂L(h) =
∫ +∞

0
(Pr[L(h, z) > t] − ̂Pr[L(h, z) > t]) dt

=
∫ t0

0
(Pr[L(h, z) > t] − ̂Pr[L(h, z) > t]) dt

+
∫ +∞

t0

(Pr[L(h, z) > t] − ̂Pr[L(h, z) > t]) dt

≤ ε

∫ t0

0

√

Pr[L(h, z) > t] + τ dt +
∫ +∞

t0

Pr[L(h, z) > t] dt

≤ ε

∫ t0

0
(
√

Pr[L(h, z) > t] + √
τ) dt +

∫ +∞

t0

ν

tα
dt

≤ εJ + ε
√

τ t0 + ν

(α − 1)tα−1
0

.

Choosing t0 to minimize the right-hand side yields t0 =
(

ν
ε
√

τ

) 1
α

and gives

L(h) − ̂L(h) ≤ εJ + α

α − 1
ν

1
α (ε

√
τ)

α−1
α .

Since τ ≤ ε2, (ε
√

τ)
α−1
α = [ετ 1

2(α−1) τ
α−2

2(α−1) ] α−1
α ≤ [εε 1

(α−1) τ
α−2

2(α−1) ] α−1
α = ετ

α−2
2α . Thus, by

Proposition 1, the following holds:

L(h) − ̂L(h)
α
√
Lα(h) + τ

≤ ε�(α)
ν

1
α

(ν + τ)
1
α

+ α

α − 1
ετ

α−2
2α

ν
1
α

(ν + τ)
1
α

≤ ε�(α) + α

α − 1
ετ

α−2
2α ,

which concludes the proof.

Combining Theorem 4 with Theorem 1 leads immediately to the following two results.

Corollary 8 Let α > 2, 0 < ε ≤ 1, and 0 < τ ≤ ε2. Then, for any loss function L (not
necessarily bounded) and hypothesis set H such that Lα(h) < +∞ and ̂Lα(h) < +∞ for
all h ∈ H , the following two inequalities hold:

Pr

[

sup
h∈H

L(h) − ̂L(h)
α
√
Lα(h) + τ

> (α)ε

]

≤ 4 E[SQ(z2m
1 )] exp

(−mε2

4

)

Pr

⎡

⎢

⎣sup
h∈H

̂L(h) − L(h)

α

√

̂Lα(h) + τ

> (α)ε

⎤

⎥

⎦ ≤ 4 E[SQ(z2m
1 )] exp

(−mε2

4

)

,

where (α) =
(

1
2

) 2
α
(

α
α−2

) α−1
α + α

α−1τ
α−2
2α and where Q is the set of functions Q = {z 
→

1L(h,z)>t | h ∈ H, t ∈ R}.
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In the following result, Pdim(G) denotes the pseudo-dimension of a family of real-valued
functions G [40, 41, 47], which coincides with the VC-dimension of the corresponding
thresholded functions:

Pdim(G) = VCdim
({

(x, t) 
→ 1(g(x)−t)>0 : g ∈ G
})

. (16)

Corollary 9 Let α > 2, 0 < ε ≤ 1. Let L be a loss function (not necessarily bounded) and
H a hypothesis set such that Lα(h) < +∞ for all h ∈ H , and d = Pdim({z 
→ L(h, z) |
h ∈ H }) < +∞. Then, for any δ > 0, with probability at least 1 − δ, each of the following
inequalities holds for all h ∈ H :

L(h) ≤ ̂L(h) + 2(α)
α
√

Lα(h)

√

d log 2em
d

+ log 4
δ

m

̂L(h) ≤ L(h) + 2(α)
α

√

̂Lα(h)

√

d log 2em
d

+ log 4
δ

m

where (α) =
(

1
2

) 2
α
(

α
α−2

) α−1
α
.

5 Applications

We now apply the above results to a couple sample applications of particular interest.

5.1 Importance weighting

As an example application of the results above, consider the case of deriving learning
bounds for importance weighting. The importance weighting technique involves adjusting
the cost of each error made on training data points so as to correct for differences between
the distributions from which training points and testing points are drawn. It has applications
in areas such as sample bias correction and adaptation [16, 43].

Let Q(z) be the probability distribution from which training samples are drawn and P(z)

be the probability distribution from which testing samples are drawn. Then, by weighting
the error made on each point, z, by w(z) = P(z)/Q(z) in our empirical loss function,
we achieve an unbiased estimator of the generalization error on the distribution P(z), even
though the training data is drawn according to Q(z). Hence, we replace our loss function
L(h, z) with the weighted loss function w(z)L(h, z).

Producing deviation bounds in the case of importance weighting is complicated by the
fact that the weights w(z) may be unbounded (if the distribution Q(z) approaches 0 faster
than P(z) in some regions). Assume that our loss function (prior to weighting) is restricted
to the range [0, 1], but our entire loss w(z)L(h, z) is still potentially unbounded due to the
unbounded weights. Then, assuming dα(P ||Q) is bounded, we note that:

Lα(h) = E
z∼D

[w(z)αLα(h, z)] ≤ E
z∼Q

[(P (z)/Q(z))α] = dα(P ||Q)α−1

where dα(P ||Q) is the exponential base 2 of the Rényi divergence.
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Corollary 9 then immediately tells us that when Lα(h) < +∞, we have for α > 2,
0 < ε ≤ 1, and for all h ∈ H and any δ > 0, with probability at least 1 − δ the following
inequality holds for all h ∈ H :

L(h) ≤ ̂L(h) + 2(α) dα(P ||Q)
α−1
α

√

d log 2em
d

+ log 4
δ

m
.

Note that when α is slightly bigger than 2 this result is extremely similar to Theorem 3
of [13], but with an improved rate of convergence with respect to the sample size m.

What’s more, Corollary 7 tells us that for the α = 2 case, with probability at least 1 − δ

the following inequality holds for all h ∈ H :

L(h) ≤ ̂LS(h) + 2
√

d2(P ||Q)

√

2 log E[SQ(z2m
1 )] + log 1

δ

m
�0

⎛

⎝2, 2

√

2 log E[SQ(z2m
1 )] + log 1

δ

m

⎞

⎠

where Q is the set of functions Q = {z 
→ 1w(z)L(h,z)>t | h ∈ H, t ∈ R} and �0(2, ε) =
1
2 +

√

1 + 1
2 log 1

ε
. These bounds are again better than those in [13].

Note further that in this α = 2 case, we have:

L2(h) = E
z∼D

[w(z)2L2(h, z)] ≤ E
z∼D

[w(z)2] = E
z∼Q

[(P (z)/Q(z))2] = d2(P ||Q)

so d2(P ||Q) simply coincides with the second moment of w.

5.2 The Tsybakov noise condition and excess risk bounds

The Tsybakov noise condition [34, 44, 50] provides a means to study excess risk bounds.
Corollary 1, if it is extended to cover the case of hypotheses with absolute values in {0, 1},
can be used along with the Tsybakov noise condition to achieve fast rates for excess risk
in a classification setting, by comparing the Bayes classifier h∗(x) (which by definition
minimizes the classification error) to the empirical risk minimizer̂h(x) (i.e. the hypothesis
with the lowest error on the training data).

We proceed by defining
R(h) = E[1h(x)�=y]
̂RS(h) = E[1h(x)�=y].

and define our loss function as

L(h(x), y) = 1h(x)�=y − 1h∗(x)�=y

which is 0 when h(x) and h∗(x) agree, 1 when h(x) makes a classification mistake that
h∗(x) doesn’t, and -1 when h∗(x) makes a classification mistake that h(x) doesn’t. Now we
apply an extended form of Corollary 1 to L(h(x), y) for any fixed α satisfying 1 < α ≤ 2.
Then, for any δ > 0, the following inequality holds with probability at least 1 − δ:

R(h) − R(h∗) ≤ ̂RS(h) − ̂RS(h∗) + 2
α+2
2α

α
√

E[|L(h(x), y)|]
√

log E[SH (x2m
1 )] + log 4

δ

m
2(α−1)

α

.

Now, since the above holds for any h in our hypothesis set H , we can choose h to bêh, the
empirical risk minimizer. Furthermore, if we assume that h∗ ∈ H (a strong assumption, but
standard in this context), we have:

̂RS(̂h) − ̂RS(h∗) ≤ 0
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since by definition ̂h achieves the minimum classification error on S of any h ∈ H .
Therefore:

R(̂h) − R(h∗) ≤ 2
α+2
2α

α
√

E[|L(h(x), y)|]
√

log E[SH (x2m
1 )] + log 4

δ

m
2(α−1)

α

= 2
α+2
2α

√

E[|L(h(x), y)|] 2
α

log E[SH (x2m
1 )] + log 4

δ

m
2(α−1)

α

.

By applying the Tsybakov noise assumption we have:

E[|L(h(x), y)|] = E[|1h(x)�=y − 1h∗(x)�=y |] = E[(1h(x)�=y − 1h∗(x)�=y)
2]

≤ β0(R(̂h) − R(h∗))γ

for some γ ∈ [0, 1] and some β0 > 0. Therefore:

R(̂h) − R(h∗) ≤
√

β(R(̂h) − R(h∗))
2γ
α

log E[SH (x2m
1 )] + log 4

δ

m
2(α−1)

α

.

for some β > 0 (dependent on α) and

R(̂h) − R(h∗) ≤
(

β
log E[SH (x2m

1 )] + log 4
δ

m
2(α−1)

α

) 1
2−2 γ

α

.

Choosing α = 2 we have

R(̂h) − R(h∗) ≤
(

β
log E[SH (x2m

1 )] + log 4
δ

m

) 1
2−γ

,

which proves a fast rate of convergence in m
−1

2−γ .

6 Conclusion

We presented a series of results for relative deviation bounds used to prove generalization
bounds for unbounded loss functions. These learning bounds can be used in a variety of
applications to deal with the more general unbounded case. The relative deviation bounds
are of independent interest and can be further used for a sharper analysis of guarantees in
binary classification and other tasks.
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Appendix

Lemmas in Support of Section 3

Lemma 4 Let 1 < α ≤ 2 and for any η > 0, let f : (0, +∞) × (0, +∞) → R be the
function defined by f : (x, y) 
→ x−y

α
√

x+y+η
. Then, f is a strictly increasing function of x

and a strictly decreasing function of y.
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Proof f is differentiable over its domain of definition and for all (x, y) ∈ (0, +∞) ×
(0, +∞),

∂f

∂x
(x, y) = (x + y + η)

1
α − x−y

α
(x + y + η)

1
α
−1

(x + y + η)
2
α

=
α−1
α

x + α+1
α

y + η

(x + y + η)1+ 1
α

> 0

∂f

∂y
(x, y) = −(x + y + η)

1
α − x−y

α
(x + y + η)

1
α
−1

(x + y + η)
2
α

= −
α+1
α

x + α−1
α

y + η

(x + y + η)1+ 1
α

< 0.

Proofs in Support of Section 4

Proof of Theorem 3

Proof We prove the first statement. The second statement can be shown in a very similar
way. Fix 1 < α ≤ 2 and ε > 0 and S assume that for any h ∈ H and t ≥ 0, the following
holds:

Pr[L(h, z) > t] − ̂Pr[L(h, z) > t]
α
√

Pr[L(h, z) > t] + τ
≤ ε. (17)

We show that this implies that for any h ∈ H , L(h)−̂LS(h)
α
√
Lα(h)+τ

≤ �(α, ε)ε. By the properties of

the Lebesgue integral, we can write

L(h) = Ez∼D[L(h, z)] =
∫ +∞

0
Pr[L(h, z) > t] dt

̂L(h) = Ez∼̂D[L(h, z)] =
∫ +∞

0

̂Pr[L(h, z) > t] dt,

and, similarly,

Lα(h) = Lα(h) =
∫ +∞

0
Pr[Lα(h, z) > t] dt =

∫ +∞

0
αtα−1 Pr[L(h, z) > t] dt .

In what follows, we use the notation Iα = Lα(h) + τ . Let t0 = sI
1
α
α and t1 = t0

[

1
ε

] 1
α−1

for s > 0. To bound L(h) − ̂L(h), we simply bound Pr[L(h, z) > t] − ̂Pr[L(h, z) > t]
by Pr[L(h, z) > t] for large values of t , that is t > t1, and use inequality (17) for smaller
values of t :

L(h) − ̂L(h) =
∫ +∞

0
Pr[L(h, z) > t] − ̂Pr[L(h, z) > t] dt

≤
∫ t1

0
ε

α
√

Pr[L(h, z) > t] + τ dt +
∫ +∞

t1

Pr[L(h, z) > t] dt .

For relatively small values of t , Pr[L(h, z) > t] is close to one. Thus, we can write

L(h)−̂L(h) ≤
∫ t0

0
ε

α
√

1+τ dt+
∫ t1

t0

ε
α
√

Pr[L(h, z)>t]+τ dt+
∫ +∞

t1

Pr[L(h, z)>t]dt

=
∫ +∞

0
f (t)g(t) dt,
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with

f (t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

γ1I

α−1
α2

α ε
α
√

1 + τ if 0 ≤ t ≤ t0

γ2
[

αtα−1(Pr[L(h, z) > t] + τ)
] 1

α ε if t0 < t ≤ t1

γ2
[

αtα−1 Pr[L(h, z) > t]] 1
α ε if t1 < t .

g(t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

γ1I

α−1
α2

α

if 0 ≤ t ≤ t0

1

γ2(αtα−1)
1
α

if t0 < t ≤ t1

Pr[L(h,z)>t] α−1
α

γ2(αtα−1)
1
α

1
ε

if t1 < t,

where γ1, γ2 are positive parameters that we shall select later. Now, since α > 1, by Hölder’s
inequality,

L(h) − ̂L(h) ≤
[∫ +∞

0
f (t)α dt

]
1
α
[∫ +∞

0
g(t)

α
α−1 dt

]
α−1
α

.

The first integral on the right-hand side can be bounded as follows:

∫ +∞

0
f (t)α dt =

∫ t0

0
(1+τ)(γ1I

α−1
α2

α ε)α dt + γ α
2 εατ

∫ t1

t0

αtα−1dt+γ α
2

∫ +∞

t0

αtα−1 Pr[L(h, z) > t]εα dt

≤ (1 + τ)γ α
1 I

α−1
α

α t0ε
α + γ α

2 εατ(tα1 − tα0 ) + γ α
2 εαIα

≤ (γ α
1 (1 + τ)s + γ α

2 (1 + sα(1/ε)
α

α−1 τ))εαIα

≤ (γ α
1 (1 + τ)s + γ α

2 (1 + sατ
1
α ))εαIα .

Since t1/t0 = (1/ε)
1

α−1 , the second one can be computed and bounded following
∫ +∞

0
g(t)

α
α−1 dt =

∫ t0

0

dt

γ
α

α−1
1 I

1
α
α

+
∫ t1

t0

1

γ
α

α−1
2 α

1
α−1

dt

t
+
∫ +∞

t1

Pr[L(h, z) > t]
γ

α
α−1

2 α
1

α−1 ε
α

α−1 t

dt

= s

γ
α

α−1
1

+ 1

γ
α

α−1
2 (α − 1)α

1
α−1

log
1

ε
+
∫ +∞

t1

αtα−1 Pr[L(h, z) > t]
γ

α
α−1

2 (αε)
α

α−1 tα
dt

≤ s

γ
α

α−1
1

+ 1

γ
α

α−1
2 (α − 1)α

1
α−1

log
1

ε
+
∫ +∞

t1

αtα−1 Pr[L(h, z) > t]
γ

α
α−1

2 (αε)
α

α−1 tα1

dt

≤ s

γ
α

α−1
1

+ 1

γ
α

α−1
2 (α − 1)α

1
α−1

log
1

ε
+ Iα

γ
α

α−1
2 (αε)

α
α−1 sαIα( 1

ε
)

α
α−1

= s

γ
α

α−1
1

+ 1

γ
α

α−1
2

(

1

(α − 1)α
1

α−1

log
1

ε
+ 1

α
α

α−1 sα

)

.

Combining the bounds obtained for these integrals yields directly

L(h) − ̂L(h)

≤
[

(γ α
1 (1 + τ)s + γ α

2 (1 + sατ
1
α ))εαIα

] 1
α

⎡

⎣

s

γ
α

α−1
1

+ 1

γ
α

α−1
2

(

1

(α − 1)α
1

α−1

log
1

ε
+ 1

α
α

α−1 sα

)

⎤

⎦

α−1
α

= (γ α
1 (1 + τ)s + γ α

2 (1 + sατ
1
α ))

1
α

⎡

⎣

s

γ
α

α−1
1

+ 1

γ
α

α−1
2

(

1

(α − 1)α
1

α−1

log
1

ε
+ 1

α
α

α−1 sα

)

⎤

⎦

α−1
α

εI
1
α

α .
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Observe that the expression on the right-hand side can be rewritten as ‖u‖α‖v‖ α
α−1

εI
1
α
α

where the vectors u and v are defined by u = (γ1(1 + τ)
1
α s

1
α , γ2(1 + sατ

1
α )

1
α ) and v =

(v1, v2) =
(

s
α−1
α

γ1
, 1

γ2

[

1

(α−1)α
1

α−1
log 1

ε
+ 1

α
α

α−1 sα

] α−1
α

)

. The inner product u · v does not

depend on γ1 and γ2, and equality holds if and only if the vectors u and v′ = (v
1

α−1
1 , v

1
α−1
2 )

are collinear (as we can see by applying Hölder’s inequality).
γ1 and γ2 can be chosen so that det(u, v′) = 0, since this condition can be rewritten as

s
1
α (1 + τ)

1
α

γ1

γ
1

α−1
2

[

1

(α − 1)α
1

α−1

log
1

ε
+ 1

α
α

α−1 sα

] 1
α

− s
1
α (1 + sατ

1
α )

1
α

γ2

γ
1

α−1
1

= 0, (18)

or equivalently,

(

γ1

γ2

) α
α−1
[

1

(α − 1)α
1

α−1

log
1

ε
+ 1

α
α

α−1 sα

] 1
α

− (1 + sατ
1
α )

1
α = 0. (19)

Thus, for such values of γ1 and γ2, the following inequality holds:

L(h) − ̂L(h) ≤ (u · v) εI
1
α
α = f (s) εI

1
α
α ,

with

f (s) = (1 + τ)
1
α s + (1 + sατ

1
α )

1
α

[

1

(α − 1)α
1

α−1

log
1

ε
+ 1

α
α

α−1 sα

] α−1
α

= (1 + τ)
1
α s + (1 + sατ

1
α )

1
α

α

[

α

(α − 1)
log

1

ε
+ 1

sα

] α−1
α

.

Setting s = α−1
α

yields the statement of the theorem.

Proof of Proposition 1

Proof We prove the first inequality. The second can be proven in a very similar way. Fix
α > 2 and h ∈ H . As in the proof of Theorem 3, we bound Pr[L(h, z) > t] by 1 for t close
to 0, say t ≤ t0 for some t0 > 0 that we shall later determine. We can write
∫ +∞

0

√

Pr[L(h, z) > t]dt ≤
∫ t0

0
1dt +

∫ +∞

t0

√

Pr[L(h, z) > t]dt =
∫ +∞

0
f (t)g(t)dt,

with functions f and g defined as follows:

f (t) =
{

γ I
α−1
2α

α if 0 ≤ t ≤ t0

α
1
2 t

α−1
2 Pr[L(h, z) > t] 1

2 if t0 < t .
g(t) =

⎧

⎨

⎩

1

γ I
α−1
2α

α

if 0 ≤ t ≤ t0

1

α
1
2 t

α−1
2

if t0 < t,

where Iα = Lα(h) and where γ is a positive parameter that we shall select later. By the
Cauchy-Schwarz inequality,

∫ +∞

0

√

Pr[L(h, z) > t]dt ≤
(∫ +∞

0
f (t)2dt

)
1
2
(∫ +∞

0
g(t)2dt

)
1
2

.
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Thus, we can write
∫ +∞

0

√

Pr[L(h, z) > t]dt

≤
(

γ 2I
α−1
α

α t0 +
∫ +∞

t0

αtα−1 Pr[L(h, z) > t]dt

)
1
2

⎛

⎝

t0

γ 2I
α−1
α

α

+
∫ +∞

t0

1

αtα−1
dt

⎞

⎠

1
2

≤
(

γ 2I
α−1
α

α t0 + Iα

) 1
2

⎛

⎝

t0

γ 2I
α−1
α

α

+ 1

α(α − 2)tα−2
0

⎞

⎠

1
2

.

Introducing t1 with t0 = I
1/α
α t1 leads to

∫ +∞

0

√

Pr[L(h, z) > t]dt ≤
(

γ 2Iαt1 + Iα

) 1
2

⎛

⎝

t1

γ 2I
α−2
α

α

+ 1

α(α − 2)tα−2
1 I

α−2
α

α

⎞

⎠

1
2

≤
(

γ 2t1 + 1
) 1

2

(

t1

γ 2
+ 1

α(α − 2)tα−2
1

) 1
2

I
1
α
α .

We now seek to minimize the expression
(

γ 2t1 + 1
) 1

2

(

t1
γ 2 + 1

α(α−2)tα−2
1

) 1
2

, first as a func-

tion of γ . This expression can be viewed as the product of the norms of the vectors

u = (γ t
1
2

1 , 1) and v = (
t

1
2

1
γ

, 1
√

α(α−2)t
α−2

2
1

), with a constant inner product (not depending on

γ ). Thus, by the properties of the Cauchy-Schwarz inequality, it is minimized for collinear
vectors and in that case equals their inner product:

u · v = t1 + 1
√

α(α − 2)t
α−2

2
1

.

Differentiating this last expression with respect to t1 and setting the result to zero gives the

minimizing value of t1: ( 2
α−2

√
α(α − 2))− 2

α =
(

1
2

√

α−2
α

) 2
α

. For that value of t1,

u · v =
(

1 + 2

α − 2

)

t1 = α

α − 2

(

1

2

√

α − 2

α

) 2
α

=
(

1

2

) 2
α
(

α − 2

α

) 1−α
α

,

which concludes the proof.
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